H20
FEATURE
STORE

DOCUMENTATION

For questions, please contact support@h?2o.ai

H20 Feature Store Version v2.1.0

Contents
What is Feature Store? 10
Feature Store artifacts oL 11
Clents o o 11
Azure Gen2 Spark dependencies e 11
Kubernetes deployment oL 11
K8s helm charts L e 11
Architecture 12
High-level architecture o o e 12
Feature Store offline engineo 12
Feature Store online engine Lo 13
Technical components L e e e 13
Running Feature Store in production e 14
Feature Store services L 14
Third-party software e 15
Concepts 16
Projects oL 16
Project Access Modifiers L 16
Features o L e 16
Feature sets L e 16
SEOTAgE e e e 16
Storage backendo Lo e 16
Output data e 17
Incremental ingest L e 17
Prerequisites 18
Requirements 19
Kubernetes cluster o L e 19
Identity provider L e e 19
PostgreSQL L e 19
Database for online records L 19
Main Storageo e e e e 19
Messaging System e e e e e e e e e e e e e e 19
Kubernetes Helm charts 20
Charts 20
Supported configurations e 20
Deploying Feature Store with Helm 0 o o 20
System events 21
Enable notifications L L 21
Events producer L e 21
Consume events e e e 29
Custom CA certificates 31
CA certificates bundle L e 31
Configure Feature Store L 31
H20 GPTE Integration 32
Configuration possibility L 32
Logging 33
Log structure L 33
Customize log format L 33
Use different file for log4j configurationo L 34

1 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Testing 36
Deploy Feature Store with Helm 0 0 o 0 e 36
Generate Personal Access Token L 36

From UL o o e e 36
From Python client o . e 37
Create Kubernetes Secret o e 38
Helm Test o e e e e e 38

Configuration of Azure Active Directory client 39
Register your application on portal.azure.com L 39
Configuration of application object properties L 39

Branding 39
Authentication e 39
APT permissions 40
Expose an API e 41
OWIETS . . . o ot e e e e e e e e e e 41

Configuration of Keycloak for PAT exchange 43
Introduction e 43
Register new client in the realm L L 43
Deployment e e 45

Destroy the stack 46

Snowflake prerequisites 47
SEEDS . o 47

Credentials configuration 48
Specifying using environmental variable e 48

AWS S3 o 48
MiInio L e e e e 48
JDBC Postgres 48
JDBC Teradata e e 48
Azure credentials e 48
S3 credentialso 49
Snowflake credentials L e 49
Teradata credentials L. e e e e e 49
Postgres credentials L e 49
GCP credentials L e 49
Passing credentials as a parameters oL Lo 49
Passing secrets to environment variables in Databricks Notebook 50

Starting the client 51
Client configuration L e 51

Obtaining version 51

Open Web Ul 51

Default naming rules 52

Authentication 53
Access token from external environment oL 53
Refresh token from identity provider L 53
Personal access tokens (PATS) o o e 53

Permissions 55
Levels of permission e e e 55

OWIET o o e e e e e e 55
Editor e e e 55
Sensitive CONSUIMETr L o e e e 55

2 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

CONSUINET ottt et e e e e e e 56
VIBWET e e e 56
Project Access Modifiers 56
Project permission APL e 56
Add permissions to the project L 56
Remove permissions from the project Lo 57
Request permissions to a project L 57
Manage permission requests from other users oL 58
Feature set permissions APT e 59
Add permissions to the feature set L 59
Remove permissions from the feature set L L L 59
Request permissions to a feature set 60
Manage feature set permissions 60
Projects API 61
Listing projects oL e 61
Listing feature sets across multiple projects L 61
Create a project L 61
Project Access Modifier L e 61
Get an existing project L 61
Remove a project L L e e 61
Update project fields L 62
Listing project users 62
Open project in Web Ul 62
Schema API 63
Creating the schema 0 L 63
Usage o e 63
Create a schema from a string e 63
Create a derived schema from a string L L 63
Create a schema from a data source L 63
Create a schema from a feature set 63
Create a derived schema from a parent feature set with applied transformation 63
Load schema from a feature set L 64
Create a new schema by changing the data type of the current schema 64
Create a new schema by column selection L L 64
Create a new schema by adding a new feature schema 64
Modify special data on a schema 64
Modify feature type L e 64

Set feature description L L L e 65

Set feature classifier L 65

Save schema as String L e e 65
Feature set API 66
Registering a feature set L 66
Time travel column selection oL Lo 67
Inferring the data type of date-time columns during feature set registration 67
Listing feature sets within a project 67
Obtaining a feature set L L 68
Previewing data L 68
Setting feature set permisSsions L. L e e 68
Deleting feature sets oL e e e 68
Deleting feature set major versions e e e 69
Updating feature set fields oL L e 69
Recommendation and classifiers oL 70
New version AP o L e 70
Feature set schema APT 0 e 70
Getting schema L e 70

3 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Checking schema compatibility 70
Patching new schema L 71

Offline to online APT e 71
Online to offline APT e 71
Feature set jobs API e 72
Refreshing feature set L e 72
Getting recommendations 72
Marking feature as target variable L L 72
Listing feature set users L 72
Derived feature sets L L e 73
Open feature set in Web Ul 73
Optimizing feature set storage (Delta lake backend only) 73
Feature API 75
Feature statistics oL e e 75
Ingest API 76
Offline ingestion L e 76
Online ingestion L L 76
Lazy ingestion L e 7
Ingest history API 78
Getting the ingestion history L e 78
Reverting ingestion L L 78
Retrieve API 79
Downloading the files from Feature Store 79
Obtaining data as a Spark Frame oL e 79
Retrieving from online L Lo 80
Jobs API 81
Listing jobs o L e 81
Getting a job L L 81
Cancelling a job L e 81
Checking job status e 81
Checking if job is cancelled e 81
Getting job results oL 81
Checking job metrics L 81
How to download using RetrieveJob L 82
Job metadata Lo 82
Create new feature set version API 83
When to create a new version of a feature set oL L 83
What happens after creating a new version L Lo 83
How to create a new version L e e 83
Create a new version on a schema change L L e 83

Create a new version by specifying affected features oo oL 84

Create a new version by specifying affected features and schema 84

Create a new version with backfilling 84
Asynchronous methods 86
Spark dependencies 87
Using S3 as the Feature Store storage: e 87
Using Azure Gen2 as the Feature Store storage: L 87
Using Snowflake as the Feature Store storage: 87
General configuration L 87

4 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

Recommendation API
Creating a regex classifier
Creating a sample classifier
Creating an empty classifier
Changing a classifier manually
Updating an existing classifier
Deleting an existing classifier

Feature set schedule API
Schedule a new task
To list scheduled tasks
Obtaining a task
Examining task executions
Obtaining a lazy ingest task
Deleting task
Updating task fields
Controlling task liveness
Starting lazy ingest task
Timezone configuration for task

Feature set review API

Manage review requests from other users
List of all pending feature set reviews requests from users
List of pending feature set reviews requests related to project
Approve a feature set review request from the user
Reject a feature set review request from the user

Get a feature set to review

Preview the data of feature set to review

Manage own feature sets in review

List all feature sets review requests in review
List feature sets review requests in review related to project

Get a feature set in review

Preview the data of feature set in review

Delete feature set version in in

Dashboard API
Recently used projects
Recently used feature sets
Feature sets popularity
Making list of favorite feature sets

CSV example

CSYV folder example
Example 1: directory structure
Example 2: directory structure

Example 3: directory structure (no date folder)

Driverless AI MOJO example

Delta table example
How to apply a filter on Delta table

JDBC example
Joined feature sets example
JSON example

JSON folder example
Example directory structure

Version v2.1.0

review

101

102
102

103
104
105

106

© 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

MongoDb example
Parquet example

Parquet folder example
Example directory structure L e e e e e e e e e

Snowflake example
Spark pipeline example
Admin Transfer Ownership Example

Supported data sources

OV
CSV folder o e
Parquet L e e e
Parquet folder L e
JSON e
JSON folder o e e e e
MongoDB o e e e
Delta table L e

Supported Operators oL e e e e e

Valid parameter combinations L e
JDBC . e
Snowflake table L L
Snowflake Cursor object L
Spark Data Frame L
Accessing H20 Drive Data e e
BigQuery (Google Cloud)

Supported derived transformation
Spark pipeline
Driverless AT MOJO e
JoinFeatureSets L
Python Sparkling Water o . oL

Key terms
Classifier e
CONSUINET ottt e e e e e
COTe . . e
Data source o e e e e e
Derived feature set L e
Editor e
Extraction e e e e e e
Feature e e
Feature set L e e e
Ingesting
Joiningo L
Keys . . o o e
Offline Feature Store e
Online Feature Store e e e
OWIIET o o e
Permission e e e e e e e
Project e
Registration L e
Retrieving o o L e
Reverting o e e
Schema
Serialization and deserialization L L

107

108

109
109

110

111

112

6 © 2024 H20.ai, Inc. All rights reserved.

Version v2.1.0
H20 Feature Store

............... 124
rARSONMALION - o
Version 2,10 (I607-2025) .o 2
RO JOAIIEES o o
O dianas, o
Version 202 (0306-2025) - s 2
B o s, o
Version 20,0 (2208-2025) . v 1
R JOATIEES - o
B g, o
Version 120 (Z501-2028) o 2
RS ¢ o
o a1 o
Version LL2 (B0-LI-2023) v 26
B o
Version LLL{ISLI2028) v o
B ey o
Version LLO (00-LI-2028) oo 126
RS ¢ o
O oy T o
Version 100 (2T09-2028) oo o
pew JEALIES e o
B sy o
Version 0.19.3 (21—08-2023) ... o
B iy o
Version 0.19.2 (I708:2028) .o eo e o
P JOATIEES - o
B Ay o
Version 0.19.1 QAOT2028) oo 2
B gy o
Version0.19.0(20—07—2023)...............................: o
s o o
s oot
Version 0181 {(IA06.2020) ..+ oo 2
B o
Version 0.18.0 (OLOB-2028) oo o
s e
o sy | o
Verston 017.0 (25-05-2023) 1. . -+ 2
RS ¢ o
S gy T i
Version0.16.0(26—04—2023)...............................: o
s o
oS T o
Version 0.15.0 (L03-2028) ..« o
RS ¢ o
O s sgpsy | o
Version 0.14.4 QE022023) .o o
s o
o sy T o
Version 0.14.3 (8-02-2028) v o
B ey o
Version 0.14.2 (7-022023) oo o
O ey o
Verston 0141 (20-022023) .+ o
B o
Version 0.14.0 (30—01-2023) ... o
RS o
o sgpsy | o
Version 0.13.0 (05-01-2023) o o

7 © 2024 H20.ai, Inc. All rights reserved.

Version v2.1.0
H20 Feature Store

............... 132
O gy o
Version 0.12.2 (MA2-2022) v e
RS ¢ o
o s sope | o
Version 0021 (06-12:2022) oo ve e e
o gy T o
Version 0.12.0 (25—11-2022) ... o
RS o
O o sgpey | i
Version 0.110 (0911-2022) - . v e e %
RS ¢ o
oS T %
VersionO.l0.0(06-10-2022)................................ o
RS o
O oy | o
Version 0.8.0 (OF08-2022) v o
RS ¢ o
O oy T o
Version 0.8.0 (0508-2022) v e e
RS o
T e
Version0.7.1(02—08—2022)................................: 1%
B e g, e
Version 0.1.0 (OTDT-2022) oo e
P JOAIIEES oo e
O iy o
Version 060 (I5-06-2022) . .-+ 150
RO JORTIEES o 150
B e gy o
Version 0.5.0 (OT06-2022) oo e
P JOAIIEES e o
B oty o
Version 0.40 (Z405-2022) o 156
RO JORIIEES o o
B sty o
Version 0.3.0 (1205-2022) oo v o
P JOATIEES - o
B e, o
Version 0.20 ZIDA202) oo d
R JOATIEES o o
B ot o
Version 0.1.3 (0B042022) e o
B iy, o
Version 0.12 (BI03-2022) . oo 9
R JOATIEES - i
B iy o
Version O.LL(IT03-2022) oo o
pew FEALIES e o
B ey o
Version 0.10 (I003-2022) oo 5
R JORTIEES - o
B ey "
Version 0.0.39 (IT02:2022) oo ee e "
R JORTIEES - o
B gy o
Version 0.0.38 (10-02-2022) ... "
RO JOATIEES - o
O o uianyy o
Version 0.0.37 (19-01-2022) o . i

8 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

New features e e 141
Fixes . . . e e e 141
Migration guide 142
From 2.0.0 to 2.1.0 L e e e 142
Feature View API removal e 142
From 1.2.0 t0 2.0.0 e 142
Scala client removalo 142
Permission Model Improvement e e 142
Changes o o e e e 142
From 1.1.2 to 1.2.0 e e e 143
From 1.0.0 to 1.1.0 e e e 143
From 0.19.3 to 1.0.0 143
From 0.19.1 t0 0.19.2« L e 145
From 0.18.0 t0 0.19.0« . e 146
From 0.16.0 to 0.17.0 e e e e e 146
From 0.15.0 to 0.16.0 e e e e e 146
From 0.14.0 t0 0.15.0 o 146
From 0.13.0 t0 0.14.0« . e 147
From 0.12.0 to 0.12.1 o L e e e 147
From 0.11.0 to 0.12.0 e e e 147
From 0.10.0 to 0.11.0 e e e e 147
From 0.9.0 to 0.10.0 e 148
From 0.8.0 t0 0.9.0 e 149
From 0.6.0 to 0.8.0 L e 149
From 0.5.0 t0 0.6.0 o e 149
From 0.4.0 to 0.5.0 L e e e e 149
Derived feature sets L. e e e e e e e e 149
From 0.2.0 t0 0.3.0 e 150
Feature set ingest API changes 150
Feature set schema API changes 151
From 0.1.3 t0 0.2.0 e e e e 151
From 0.1.1 to 0.1.2 e e e e 151
From 0.1.0 to 0.1.1 o o e 152
Version change setter for feature removed oo o 152
Update metadata method removed on project and feature set 152
GRPC project API changes e 152
GRPC feature set API changes e 153

9 © 2024 H20O.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

What is Feature Store?

The H20 Feature Store is a centralized repository for storing, updating, retrieving, and sharing features used in machine
learning models across different projects. For most machine learning and Al applications, raw data must be transformed
into features that are optimized for capturing information from the data. H20 AI Feature Store allows data scientists
and engineers to easily organize, govern, share, and reuse these features. With H20 AI Feature Store, organizations can
improve collaboration, increase the efficiency of the model development process, and deliver impactful Al outcomes faster.

10 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

This page contains the downloadable artifacts users need for connecting to the Feature Store server.

Feature Store artifacts
Clients

The following are the clients you can use to connect to Feature Store. You only need one depending on which environment
you are using.

e Python
e Snowflake
« GRPC API

Python Python 3.7 or later is required to use the Feature Store Python client. You can install the Python client through
several different methods. The simplest is via pip:

pip install h2o-featurestore
You can also install the Python client using of the of the following packages:
e Python client zip
e Python client wheel
GRPC API Feature Store uses GRPC as its communication protocol. If you use Java, you can use the GRPC API to
connect to Feature Store. This is the download link for Feature Store’s Java GRPC API client library:
e Java GRPC Feature Store API

Azure Gen2 Spark dependencies
If you are using Azure Gen2 as the Feature Store storage cache, you will need Spark.

e Azure Gen2 Spark Dependencies

Kubernetes deployment

You can use helm charts to deploy Feature Store in a Kubernetes cluster.

K8s helm charts
This is the file you need to install Feature Store in Kubernetes:

e Feature Store Helm Charts

11 © 2024 H20.ai, Inc. All rights reserved.

https://s3.amazonaws.com/artifacts.h2o.ai/releases/ai/h2o/feature-store/release/2.0.0/python-cli/h2o_featurestore-2.0.0.zip
https://s3.amazonaws.com/artifacts.h2o.ai/releases/ai/h2o/feature-store/release/2.0.0/python-cli/h2o_featurestore-2.0.0-py2.py3-none-any.whl
https://s3.amazonaws.com/artifacts.h2o.ai/releases/ai/h2o/feature-store/release/2.0.0/java-grpc-api/featurestore-java-grpc-api-2.0.0.jar
https://s3.amazonaws.com/artifacts.h2o.ai/releases/ai/h2o/feature-store/release/2.0.0/spark-dependencies/featurestore-spark-dependencies-2.0.0.jar
https://s3.amazonaws.com/artifacts.h2o.ai/releases/ai/h2o/feature-store/release/2.0.0/helm/featurestore-2.0.0.tgz

H20 Feature Store Version v2.1.0

Architecture

This section describes the main components of the Feature Store.

High-level architecture
This subsection provides a basic overview of how the Feature Store runs.

You can push data to Feature Store through one of the Clients. The load-balancer acts as an ingress router for the cloud
and routes the traffic to the Feature Store service that exposes the API. This lets you connect to one of the engines.

There are two engines: offline and online. The offline engine is a core service that handles API requests. It stores the
metadata (that is, feature sets) used to train the model in a PostgreSQL database. The online engine stores the users’ data
and metadata with better accessibility. It uses this information to inference the model. The online engine can store online
records data in Redis or in PostgreSQL database. You can sync data between the offline and online engine depending on
how you want to use it. The main difference between the two engines is the real data location.

Persistent storage can be located in either S3 or in Azure Gen2. Apache Kafka queues requests for the offline and online
engines and passes them to the Feature Store.

GRPC API .l Feature Store Online Engine
m :
=
[:]
Data g
Scientist Scala Client § Feature Store Offline Engine
Python Client
’ . AP| Gateway API Gateway
APl Gateway ;:.::nc;aéﬁ::‘ye Online Engine Online Engine
. . Offline Engine Offline Engine
<>
PostgreSQL Redis/PostgreSQL Storage Apache Kafka

(S3/Azure Gen2) Implementation

Feature Store offline engine

The core (pictured here as the offline engine) is a service that handles API requests.

12 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

APl
Gateway

Spark Operator

o
D

Kafka

(S3¥/Azure Gen2)

Feature Store online engine
The online engine is a scalable component that provides support for main three functionalities:

 storing data into the online storage - supported databases are Redis and PostgreSQL.
« saving data regularly from the online databases into the offline Feature Store storage (online to offline).
 updating Redis after each ingestion into the offline Feature Store storage with missing values (offline to online

).

Eaf::ny * ‘;{ Kafka

Storage
(S¥Azure Gen2)
—
Kafka to
Redis/PostgreSQL Kafka To Offline

Redis/PostgreSQL I
| ‘ Offline To Online

Technical components

e Authorization - PostgreSQL for storing the authorization data
e Authentication - OpenldConnect

o Database - PostgreSQL

« Execution framework - Apache Spark

13 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

e Deployment environment - Kubernetes
o API definition - ProtoBuf & GRPC

Running Feature Store in production

Feature Store itself requires four components to be up and running inside a Kubernetes cluster. These main services will
be installed automatically when you use our Helm charts.

Preferred architecture used in production:

HTTPS

53/ Azure Data Lake Storage

<
(I] Core Service ' l
GRPCHTTPS : - : DB
E’ :] API(GRPC, Rest) : {PostgreSQL)
Wb UIGLI Ingress i i —
¥ = ",
Front End Online Store || : ‘ Redis / ElastiCache
AP (Rest)
: : " !
Spark Services
Spark App Iy
{custom resource)
Spark Operator Spark Cluster I . 1‘5
S : —
: —_—
@ Frsetors I MSKS Apache Kafka
e .
Q| =

T | ' KBS AFI

C : !

Telemetry |

Compaonent H

) I'\BITN.'SPBW - rBa‘HlE‘.SaDT’S N - . N .))
Kubiernates,
Note:

This graph does not present OAuth integration. To authenticate a user in the system, it has to be integrated with SSO
(which supports OpenID protocol).

Feature Store services

Core API The Feature Store Core is a Feature Store component that is always deployed within the container of the
Kubernetes cluster. It uses GRPC to define the API, allowing it to be easily consumed by the clients. It performs several

14 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

important functions:

o registers the features in the database.
o triggers the start of data manipulation tasks on the Spark cluster.
e performs authentication and queries for authorization permissions.

This service provides a customer-facing API. It can be exposed via Kubernetes Ingress or any other Load Balancer. The
Ingress must be able to route traffic to a GRPC service. We recommend to start at least two pods of this component to
ensure high availability. We also suggest to assign at least 2 CPUs and 2GB of RAM for each pod, but the values depend
on the client needs.

Online store This service is responsible for ingesting data into Redis and managing online-to-offline processes. We
recommend starting at least two pods of this component to ensure high availability. We also suggest assigning at least 2
CPUs and 2GB of RAM for each pod, but the values depend on the client needs.

Spark operator The Kubernetes operator which manages the Spark jobs. The Feature Store Core submits a Spark job
specification to the Spark operator. The Spark operator fully manages the life cycle of the Spark job. It also pushes job
status change events to a messaging queue.

Only one pod can be present in the cluster. We suggest assigning at least 2 CPUs and 2GB of RAM to the pod.

Spark job The Spark cluster started dynamically by the operator to process your data. The Spark cluster is used for
data manipulation tasks (such as registering new features or creating output data from selected features). The Feature
Store Core takes care of starting and stopping separate Spark clusters for each new job. The communication between the
Core and Spark is also implemented via GRPC.

We recommend using dedicated Kubernetes nodes with auto-scaling to host Spark clusters. The number of resources in
the production environment depends on the feature set sizes, but we recommend assigning no less than 2 CPUs and 8GB
of RAM. By default, the Spark Cluster will use 1 driver pod + 3 executors.

Third-party software
Feature Store also requires third-party software to be present and accessible. This third-party software is seen lining the
outside of the preceding production image.
PostgreSQL Feature Store uses PostgreSQL as the database. The database stores information about features, feature
sets, projects, and users (also known as the metadata).
Postgres can also be used as a backend for online Feature Store (Redis is the default).
Redis By default, the Feature Store online engine uses Redis as a backend to store online data. It is recommended to
use the Redis cluster setup, but any other configuration should work. Memory allocated to the cluster depends on the
client needs and features stored in it.
Main storage The system supports 2 types of storage:

e S3 (and S3 compatible, e.g., Minio)

e Azure Data Lake Storage Gen2

Event platform We recommend you use Kafka.

15 © 2024 H20.ai, Inc. All rights reserved.

https://redis.io/
https://kafka.apache.org/

H20 Feature Store Version v2.1.0

Concepts

This page explains the main concepts of Feature Store.

Projects

Projects are the repository that contain feature sets which are comprised of features. Projects can be used to separate
work by department (e.g., engineering and accounting).

Project Access Modifiers

Access to projects can be further modified by access modifiers. For more information, please see Projects access modifiers.

Features

Features are columns of highly curated data. Features are used to enhance the performance of ML models because features
are measurable data. Features can be seen when you call the schema, and the printout will be in the order of <column
title> <feature>. For example:

category STRING, jobtitle STRING

Feature sets

A feature set is a collection of features. Feature sets are created via registration from the feature set schema. Registering
a feature set simply means you are creating a new feature set. This information comes from a schema that you have
extracted from a raw data source that you ingested into Feature Store.

The data sources for ingestion are available on the Supported data sources page.

Derived feature sets Feature Store has the ability to create derived feature sets. Derived feature sets are created from
a parent feature set that has applied transformations. When the parent feature set is ingested to or reverted from, it
automatically triggers the ingesting and/or reverting changes for its derived feature set.

The supported ways of transformation are:

o Spark Pipeline
e Driverless AI MOJO
e Join

Keys A feature in the feature set can be marked as a primary key. This primary key can be used to search for a specific
item in your data. Primary keys must have a unique value (e.g., a social security number). When you want to create data
from more feature sets, these are the keys used for the joining process.

Tags Tags can be attached to feature sets for filtering purposes.

Types of Feature Store users There are several types of user permissions in Feature Store. For more information
please see Permissions.

Storage

Feature Store uploads outputted data to a data store. You can obtain the data by downloading it using the pre-signed
URL link.

Storage backend

Multiple storage backends are supported:

o Any system exposing S3 API (AWS, Google Cloud, Minio)
e Azure Data Lake Gen 2

Storage file format Files are written in delta format.

16 © 2024 H20.ai, Inc. All rights reserved.

https://docs.databricks.com/delta/delta-intro.html

H20 Feature Store Version v2.1.0

Output data

Output data results from the materialization of the features. The data can then be used inside any ML platform.

Incremental ingest

Incremental ingestion is a consistent ingestion that takes place over time. Instead of ingesting all the data at once, it
ingests new data over time (e.g., every five hours or every day). This can be done through scheduled ingestion.

Feature Store maintains one entry in storage for each major version of a feature set. New data are appended to storage
during each new data ingest. Only unique values are appended.

17 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Prerequisites
1. Ensure that you have Kubernetes running and kubectl configured to access this cluster.
2. Install the Helm CLI on your local machine. Minimal supported version is 3.3.4.
3. Download helm charts from the Downloads page.
4. Ensure you have your identity provider running and that it is configured correctly. Refer to IDP configuration

for more details.
5. Ensure that you have Azure Event Hubs or AWS MSK or Kafka preconfigured with at least 1 topic.
a. Feature Store Core asynchronously communicates with the Spark operator and Spark jobs by interfacing with a
message queue system.

In the case of using Snowflake as a offline storage, please follow the Snowflake prerequisites instructions.

18 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Requirements
Kubernetes cluster

Feature Store must be deployed on top of Kubernetes. Try using the Helm charts delivered by H20.ai.

Identity provider
Please make sure your identity provider, such as Keycloak or Azure Active Directory, is running.

For Azure, we provide additional information available at Configuration of Azure Active Directory client.

PostgreSQL

PostgreSQL is used to store all Feature Store metadata.

Database for online records

Either Redis or PostgreSQL can be used for storing online features.

Main storage

Feature Store supports Azure Data Lake Gen2 or any Amazon S3 API supported cloud storage services.
Messaging system

Feature Store uses Kafka as messaging protocol. Therefore, implementations of Kafka protocol in Cloud are natively
supported (e.g., Azure EventHub or Amazon MSK).

19 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Kubernetes Helm charts

Charts

Feature Store Helm charts are designed to be a lightweight way to install Feature Store official services. It is the official
way to install the services.

Supported configurations
We recommend matching the versions of the Helm chart and the Feature Store you're installing.

The Helm chart which matches this version of Feature Store is available in the kubernetes section of the download page.

Deploying Feature Store with Helm

You have to prepare the values file before running the install command because it is required to configure the deployment.
Default values are documented in the Helm values section.

Install Helm charts:
helm install feature-store PATH_TO_DOWNLOADED_CHART --values helm-values.yaml -n K8S_NAMESPACE
The output should look like this:

NAME: feature-store

LAST DEPLOYED: Wed Feb 16 13:52:34 2022
NAMESPACE: fs-local

STATUS: deployed

REVISION: 1

TEST SUITE: None

20 © 2024 H20.ai, Inc. All rights reserved.

helm_values.mdx

H20 Feature Store Version v2.1.0

System events

Feature Store core service notifies 3rd party systems about your actions by sending events to a pointed Kafka topic or logs.

Enable notifications
To enable notifications users have to set the notifications.channels parameter to one of the following values:

e kafka
e logs
o kafka,logs

Then, configure the Kafka topic with the proper parameter messaging.kafka.notifications. *.

We recommend providing that configuration through Helm values:

Helm Value Default Description

global.notifications.channels empty Set value (e.g. kafka to enable
notifications)

global .messaging.kafka.topics.notifications (no default value) Name of notifications topic

Note: It is possible to automatically configure new topics by the Feature Store. Please review the

global.config.messaging.kafka parameters described in Helm values.

Events producer

The core service will send an event every time the user makes an API call to the backend. Based on that information,
consumer service has knowledge about all actions happening in the Feature Store. That information can be used through
an alert system to notify the operator about users’ actions.

The following is an example triggered while creating a new project:

project = client.projects.create("test")

{

"seq": "2022-07-20T08:15:46.861903-62d7b9b2d209b07c1d88£720",

"method": "CreateProject",

"timestamp": "2022-07-20T08:15:46.861903",

"requestId": "fdb98051-c732-49cd-8eb5b-8bad8fb325a2",

"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",

"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-—
c¢/21.0.0 (osx; chttp2)",

"id": "62d7b9b2d209b07c1d88£720",

"projectName": "testl"
}
project = client.projects.get("test")
{

"seq": "2022-10-03T16:57:58.300710-633a£8600423a6148368033e",

"method": "GetProject",

"timestamp": "2022-10-03T16:57:58.30071",

"requestId": "a02d7618-869f-4330-8b91-ccb523d2d6adl"”,

"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",

"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",

"id": "62d7b9b2d209b07c1d88£720",

"projectName": "test"

}

project.delete()

21 © 2024 H20.ai, Inc. All rights reserved.

helm_values.mdx

H20 Feature Store Version v2.1.0

"seq": "2022-10-04T08:35:06.673156-633bd413708da32636a7cdbe",

"method": "DeleteProject",

"timestamp": "2022-10-04T08:35:06.673156",

"requestId": "85598laf-c82a-48d3-8b32-828f21e86c27",

"userId": "8cf44396-1e80-4bd4-8d8d-cbe6befbdf2d",

"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",

"id": "62d7b9b2d209b07c1d88£720",

"projectName": "test"
}
client.projects.list()
{

"seq": "2022-10-04T08:37:35.166016-8cf£44396-1e80-4bd4-8d8d-cbebbefb4f2d",

"method": "ListProjects",

"timestamp": "2022-10-04T08:37:35.166016",

"requestId": "5996c73a-3179-4ad4-aecl1-82a215606283",

"userId": "8cf44396-1e80-4bd4-8d8d-cbe6befb4f2d",

"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)"
}

project.add_consumers(["dev@h20.ai"]) # add permissions

{
"seq": "2022-10-04T08:41:06.803045-633bd481708da32636a7cdc8",
"method": "AddProjectPermission",
"timestamp": "2022-10-04T08:41:06.803045",
"requestId": "a628c9fd-£849-4b91-b764-88e11260ac4f",
"userId": "8cf44396-1e80-4bd4-8d8d-cbe6befb4f2d",
"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",
"id": "633bd481708da32636a7cdc8",
"projectName": "test3",
"additionalData": {
"permissionType": "Consumer",
"users": "dev@h2o.ai"
}
}

project.remove_consumers(["dev@h20.ai"])

{
"seq": "2022-10-04T08:42:50.347749-633bd481708da32636a7cdc8",
"method": "RemoveProjectPermission",
"timestamp": "2022-10-04T08:42:50.347749",
"requestId": "ef174341-84ce-46e7-a3a7-4eb92e023fad",
"userId": "8cf44396-1e80-4bd4-8d8d-cbe6befb4f2d",
"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",
"id": "633bd481708da32636a7cdc8",
"projectName": "test3",
"additionalData": {

"permissionType": "Consumer",
"users": "dev@h2o.ai"
b
}
project.description = "better description" # similar will be for other fields update
{

22 © 2024 H20.ai, Inc. All rights

reserved.

H20 Feature Store

"seq": "2022-10-04T08:45:46.111069-633bd481708da32636a7cdc8",
"method": "UpdateProjectFields",
"timestamp": "2022-10-04T08:45:46.111069",
"requestId": "e6d7d6df-ef0d-4221-9536-dd9fb175eebc",
"userId": "8cf44396-1e80-4bd4-8d8d-c5e6befb4f2d",
"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",
"id": "633bd481708da32636a7cdc8",
"projectName": "test3d",
"additionalData": {
"updatedValue": "better description"
b
}

fs = project.feature_sets.register(csv_schema, "fs_test")

{
"seq": "2022-07-20T10:30:04.639687-62d7bd0c93£57739745041a5",
"sourceRequest": "",
"method": "OfflineFeatureSetRegister",
"timestamp": "2022-07-20T10:30:04.639687",
"requestId": "737ed314-bf29-4d01-aecd-3c4flecb21c2",
"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",
"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",
"id": "62d7bd0c93f57739745041a5",
"projectName": "testl",

"featureSetName": "fs_test",
"additionalData": {
"partitionBy": "time_travel_column_auto_generated",
"timeTravelColumn": "",
"primaryKey": "",
"createdDateTime": "2022-07-20T08:30:04.446074",
"owner": "dev@h2o0.ai"
}
}
fs = project.feature_sets.get("fs_test")
{

"seq": "2022-10-04T09:08:02.048966-633af7b80423a61483680335",

"sourceRequest": "",

"method": "GetFeatureSet",

"timestamp": "2022-10-04T09:08:02.048966",

"requestId": "0709aeb8-e322-4c22-9bff-bl6dbeddbabb",

"userId": "17a91bc8-3733-4d40-af33-e729cceb6823a",

"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",

"id": "633af7b80423a61483680335",

"projectName": "test_project",

"featureSetName": "fs_test",

"additionalData": {

"featureSetVersion": "1.1"

}

}

fs_new = fs.create_new_version(csv_schema, "new version")

{
"seq": "2022-10-04T09:09:56.742789-633af7b80423a61483680335",
"sourceRequest": "",
"method": "CreateNewFeatureSetVersion",

23 © 2024 H20.ai, Inc

Version v2.1.0

. All rights

reserved.

H20 Feature Store Version v2.1.0

"timestamp": "2022-10-04T09:09:56.742789",
"requestId": "0dd81fd4-8f54-48f6-b816-7a81fccdd377",
"userId": "17a91bc8-3733-4d40-af33-e729cceb6823a",
"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",
"id": "633af7b80423a61483680335",
"projectName": "test_project_123",
"featureSetName": "test_fs",
"additionalData": {
"updatedVersion": "2.0"
}
}

fs.delete()

{
"seq": "2022-10-04T09:31:57.332711-633af7b80423a61483680335",
"sourceRequest": "",
"method": "DeleteFeatureSet",
"timestamp": "2022-10-04T09:31:57.332711",
"requestId": "4f0c0f44-9b39-48aa-8695-7f3beb079645",
"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",
"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",
"id": "633af7b80423a61483680335",
"projectName": "test_project_123",

"featureSetName": "test_fs"
b
fs.description = "test description" # similar will be for other fields update
{

"seq": "2022-10-04T09:15:55.695864-633af7b80423a61483680335",

"sourceRequest": "",

"method": "UpdateFeatureSetFields",

"timestamp": "2022-10-04T09:15:55.695864",

"requestId": "fe6al129-c9d6-4ac9-9442-9b4£39cc3bdc",

"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",

"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",

"id": "633af7b80423a61483680335",

"projectName": "test_project_123",

"featureSetName": "test_fsl",
"additionalData": {
"description": "test description"
}
}
{

"seq": "2022-10-04T09:15:55.924144-633af7b80423a61483680335",

"sourceRequest": "",

"method": "GetFeatureSetLastMinor",

"timestamp": "2022-10-04T09:15:55.924144",

"requestId": "4bcl17a4f-4818-497f-956d-aebfb75824a2",

"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",

"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",

"id": "633af7b80423a61483680335",

"projectName": "test_project_123",

"featureSetName": "test_fsi",

"additionalData": {

24 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

"featureSetVersion": "1.2"
}
}
fs.list_versions()
{

"seq": "2022-10-04T09:20:08.376487-17a91bc8-3733-4d40-af33-e729cce6823a",

"method": "ListFeatureSetVersions",

"timestamp": "2022-10-04T09:20:08.376487",

"requestId": "c66fe245-e7a8-4c27-9272-63£264cd0e63",

"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",

"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c¢/21.0.0 (osx; chttp2)"
}

project.feature_sets.list()

{
"seq": "2022-10-03T16:58:40.040700-17a91bc8-3733-4d40-af33-e729cce6823a",
"method": "ListFeatureSets",
"timestamp": "2022-10-03T16:58:40.0407",
"requestId": "1cd48fff-babf-4602-bbb8-f22b8falcf82",
"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",
"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",
"additionalData": {
"projectNames": "test_project2,test_project_123",
"featureSetIds": "633af8750423a61483680341,633af7b80423261483680335"

}
}
feature = fs.features["id"]
feature.description = "test description" # similar will be for other fields update
{

"seq": "2022-10-04T09:27:33.904475-633af7b80423a61483680335",

"sourceRequest": "",

"method": "UpdateFeatureFields",

"timestamp": "2022-10-04T09:27:33.904475",

"requestId": "caele009-5096-4c47-bf62-8£500ec9a7f1l",

"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",

"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",

"id": "633af7b80423a61483680335",

"projectName": "test_project_123",

"featureSetName": "test_£fsl1",
"additionalData": {
"featureName": "id",
"updatedField": "descriptiomn",
"updatedValue": "test_description"
¥
}
fs.add_consumers(["test@h20.ai"])
{
"seq": "2022-10-04T09:11:59.740232-633af7b80423261483680335",
"sourceRequest": "",
"method": "AddFeatureSetPermission",

"timestamp": "2022-10-04T09:11:59.740232",
"requestId": "b159d492-ca02-4717-814e-16b494963b70",
"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",

25 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c¢/21.0.0 (osx; chttp2)",
"id": "633af7b80423a61483680335",
"projectName": "test",
"featureSetName": "test_fsi",
"additionalData": {
"permissionType": "Consumer",
"users": "test@h2o0.ai"
}
}

fs.remove_consumers(["test@h20.ai"])

{
"seq": "2022-10-04T09:14:07.807106-633af7b80423a61483680335",
"sourceRequest": "",

"method": "RemoveFeatureSetPermission",
"timestamp": "2022-10-04T09:14:07.807106",
"requestId": "886835ee-bc45-4914-abdc-89317101df14",
"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",
"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",
"id": "633af7b80423261483680335",
"projectName": "test_project_123",
"featureSetName": "test_fsl1",
"additionalData": {
"permissionType": "Consumer",
"users": "test@h2o.ai"
}
}

fs.ingest(csv)

{

"seq": "2022-07-20T10:34:17.366153-62d7bd0c93£57739745041a5",

"sourceRequest": "",

"method": "StartIngest",

"timestamp": "2022-07-20T10:34:17.366153",

"requestId": "301bb8e6-8e64-4d8e-92e6-96a436e29e89",

"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",

"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c¢/21.0.0 (osx; chttp2)",

"id": "62d7bd0c93£57739745041a5",

"projectName": "testl",

"featureSetName": "fs_test",

"additionalData": {

"jobId": "62d7be0993f57739745041a9"
X

"seq": "2022-07-20T11:45:06.221177-62d7ce6305797005c7dadbad",

"sourceRequest": "RawData(RawDataLocation(Csv(CSVFileSpec(s3a://feature-store-test-
data/smoke_test_data/training.csv,,,UnknownFieldSet(Map()))) ,UnknownFieldSet (Map())))",

"method": "EndIngest",

"timestamp": "2022-07-20T11:45:06.221177",

"id": "62d7ce6305797005c7dadbad",

"ingestionCount": 3,

"ingestionStartTime": "2022-07-20T09:44:40.635830",

"ingestionEndTime": "2022-07-20T09:44:43.273830",

"projectName": "testl",

Version v2.1.0

26 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

"featureSetName": "fs_test"

"seq": "2022-10-03T16:55:16.215758-633af7c00423a61483680339",
"method": "JobStatus",
"timestamp": "2022-10-03T16:55:16.215758",
"id": "633af7c00423a61483680339",
"additionalData": {
"eventId": "00a10969-f48f-4f3e-b125-6071f5c4633f"
},
"jobStatus": "Running"

}
fs.get_preview()

{
"seq": "2022-10-03T17:13:19.862989-633af7b80423261483680335",
"method": "GetPreview",
"timestamp": "2022-10-03T17:13:19.862989",
"requestId": "94d0f5de-5c34-4197-bce3-8e2480c5ba76",
"userId": "17a91bc8-3733-4d40-af33-e729cceb6823a",
"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",
"id": "633af7b80423a61483680335",
"projectName": "test",
"featureSetName": "test_fs"

}
ref.as_spark_frame(spark_session)

{

"seq": "2022-10-03T17:19:04.772158-633af7b80423a61483680335",

"sourceRequest": "",

"method": "RetrieveAsSpark",

"timestamp": "2022-10-03T17:19:04.772158",

"requestId": "8ad0f47f-a057-4e29-aeb6-d3e761421£d47",

"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",

"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",

"id": "633af7b80423a61483680335",

"projectName": "test",
"featureSetName": "test_fs"
}
ref.download ()
{

"seq": "2022-10-03T17:14:17.676281-17a91bc8-3733-4d40-af33-e729cce6823a",

"method": "RetrieveAsLinks",

"timestamp": "2022-10-03T17:14:17.676281",

"requestId": "aaf0f2d9-7922-4c00-be28-bf7302d21604d",

"userId": "17a91bc8-3733-4d40-af33-e729cceb6823a",

"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",

"additionalData": {

"jobId": "633afc1d0423a61483680347"

¥

}

ref = ingest.retrieve()
ref.download()

27 © 2024 H20.ai, Inc

Version v2.1.0

. All rights

reserved.

H20 Feature Store Version v2.1.0

"seq": "2022-10-04T09:41:23.219196-633be24c708da32636a7cdda",

"sourceRequest": "",

"method": "StartRetrieveJob",

"timestamp": "2022-10-04T09:41:23.219196",

"requestId": "27568494-7765-494e-9c83-al9ae73c7ddb",

"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",

"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",

"id": "633be24c708da32636a7cdda",

"projectName": "test_project",

"featureSetName": "test_fs",

"additionalData": {

"jobId": "633be3a3708da32636a7cde8"

}

}

ingest.revert()

{
"seq": "2022-10-04T09:43:51.959670-633be24c708da32636a7cdda",
"sourceRequest": "",

"method": "StartRevertIngest",
"timestamp": "2022-10-04T09:43:51.95967",
"requestId": "7ec74e9e-660f-40ae-be3a-0ab54fc3b9e7a",
"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",
"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)",
"id": "633be24c708da32636a7cdda",
"projectName": "test_project",
"featureSetName": "test_fs",
"additionalData": {
"jobId": "633be437708da32636a7cdeb"
}
}

client.auth.login()

{
"seq": "2022-10-03T16:42:36.891337-17a91bc8-3733-4d40-af33-e729cce6823a",
"method": "UserLogin",
"timestamp": "2022-10-03T16:42:36.891337",
"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",
"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)"
}

client.auth.logout ()

{
"seq": "2022-10-03T16:43:51.724728-17a91bc8-3733-4d40-af33-e729cce6823a",
"method": "UserLogout",
"timestamp": "2022-10-03T16:43:51.724728",
"requestId": "bf4b8a63-leel-416e-a347-2c04c7af485b",
"userId": "17a91bc8-3733-4d40-af33-e729cce6823a",
"userAgent": "feature-store-py-cli/SUBST_FS_VERSION grpc-python/1.43.0 grpc-
c/21.0.0 (osx; chttp2)"
}

28 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Consume events

All events sent by the core service are in JSON format. The consumers need to pull the data from the topic specified in
the configuration.

Kafka has a command line consumer that dumps out messages to standard output.

$ kafka-console-consumer.sh --bootstrap-server localhost:9094 --topic notifications --from-beginning

{

seq": String (Surrogate Key: Timestamp-id),

"sourceRequest": String (in case of a feature set, it contains be data source domains, for ingest it contain
"method": String (name of the action in Feature Store),
"timestamp": LocalDateTime,

"requestId": Stringx,

"userId": Stringx*,

"userAgent": Stringx*,

"id": String* (project or feature set id),

"ingestionCount": Long* (only available whit ingest statistics),
"ingestionStartTime": String*,

"ingestionEndTime": String*,

"projectName": Stringk*,

"featureSetName": Stringk,

"additionalData": { 1}*

}

Keys in additionalData object are:
e jobId
e permissionType
e users

o featureName

e updatedField

e updatedValue

e message

o featureSetVersion
e updatedVersion

e projectNames

¢ featureSetIds

e eventld

e description

e customData

e accessModifier

o featureSetType

e applicationName

e deprecated

e dataSourceDomains
e tags

e processlnterval

e processIntervalUnit
o flow

o featureSetType

e applicationId

e approved

e notes

e onlineNamespace

e connectionType

e topic

e ttlOffline

e ttlOfflineInterval
e ttlOnline

29 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

e ttlOnlinelnterval
e featureld

e status

e dataType

e importance

e classifiers

e special

and values are strings.
The method field can have one of the following values:

e CreateProject

e DeleteProject

e ListProjects

e GetProject

¢ AddProjectPermission

¢ RemoveProjectPermission

e OfflineFeatureSetRegister
¢ CreateNewFeatureSetVersion
e DeleteFeatureSet

¢ AddFeatureSetPermission

¢ RemoveFeatureSetPermission
e UpdateFeatureFields

¢ GetFeatureSetLastMinor

e GetFeatureSet

e ListFeatureSetVersions

¢ ListFeatureSets

e UpdateFeatureSetFields

e StartlIngest

e StartRevertIngest

e StartRetrieveJob

e RetrieveAsSpark

e GetPreview

e RetrieveAsLinks

e JobStatus

e UserLogin

e UserLogout

e EndIngest

e UpdateProjectFields

This value shows which action was triggered by the user.

Note: Fields are only available in JSON when not null. For example, the id field, depending on method, will be ProjectId
when using Project API.

30 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Custom CA certificates

It’s possible to add own CA certificates to components’ trust store. To do that, config-map with CA bundle has to be
present in kubernetes cluster.

CA certificates bundle

User can load multiple certificates into Feature Store components. All certificates have to be bundled in one config item
and store in k8s config map, eg:

apiVersion: vl
kind: ConfigMap
metadata:
name: pem-ca-bundle
data:
rootCA.pem: |
FjAUBgNVBAsMDUZ1YXR1cmUtU3RvcemUxDzANBgNVBAMMB1 Jvb3RDQTCCASIwDQYJ

KoZThvcNAQEBBQADggEPADCCAQoCggEBAMaL6==

MIIDTjCCAjYCCQDjradeTuANSjANBgkghkiGOwOBAQsFADBpMQswCQYDVQQGEwJIQ

ftAwrrWU2poHRkQQY5CxatxMPgSxievLCulq7gnzHpXtbw==

TDEPMAOGA1UECAwGS3Jha293MQ8wDQYDVQQHDAZLcmFrb3cxDzANBgNVBAoMBkgy

Jvo2e6md7u/SBORgy6TCbohRVmoqCbuiTfqjJpalhNVFu==

Configure Feature Store

To add own CA certificates into Feature Store users have point the config map with the certificate through Helm values:

Helm Value Default Description

global.extraTrustedCertificates.configMapName empty ConfigMap name with CA certificates
bundle

global.extraTrustedCertificates.caBundleKey ca_bundle.pem ConfigMap key name with certificates list

31 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

H20 GPTE Integration

Configuration possibility
The Feature Store can be integrated with H20 GPTe using presented configuration:

e global.cloud.h20GPTe.enabled

e global.cloud.h20GPTe.url

e global.cloud.h20GPTe.apiKey

e global.cloud.h2oGpteServiceName

If the global.cloud.h20GPTe.url is not provided, the Feature Store will attempt to retrieve the service address from
service discovery by checking if service exists. In this case global.cloud.h20GpteServiceName is used.

Regarding authentication, the Feature Store can use an API Key (global.cloud.h20GPTe.apiKey) for the system account.
In this case, this key will also be shared with the Ul to facilitate chat service access. If the API key is not provided, both
the Feature Store and H20 GPTe must use the same Identy Provider for the usage of Access Tokens.

32 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Logging

By default, all Feature Store services produce logs to stdout in JSON format.

Log structure

We use the following JSON template:

{
"time": {
"$resolver": "timestamp",
"pattern": {
"format": "yyyy-MM-dd'T'HH:mm:ss.SS'Z'",
"timeZone": "UTC"
}

1,

"level": {

"$resolver": "level",
"field": "name"

1,

"message": {

"$resolver": "message",
"stringified": true

3,

"error": {

"$resolver": "exception",
"field": "message",
"stringified": true

3,

"user": {

"$resolver": "mdc",
"key": "userId"

3,

"grpc_server_method": {
"$resolver": "mdc",
"key": "grpcServerMethod"

1,

"thread_id": {

"$resolver": "thread",
"field": "name"

3,

"logger": {

"$resolver": "logger",
"field": "name"

1,

"stacktrace": {
"$resolver": "exception",
"field": "stackTrace",
"stackTrace": {

"stringified": true
3
}
}

Customize log format

It is s possible to provide a custom log4j2 configuration. To overwrite the log4j2.properties file (after installation),
edit default log4j config map - {{ .Release.Name }}-logdj-config

Also, it is possible to provide a custom config map with log4j2 configuration. Prepare the new log4j2.properties file

33 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

you want to use. For example:

apiVersion: vl
kind: ConfigMap
metadata:
name: log4j-config
data:
log4j2.properties: |
monitorInterval=5

Root logger option
rootLogger.level=INF0O
rootLogger.appenderRefs=stdout
rootLogger.appenderRef .stdout.ref=STDOUT
appenders=console

Direct log messages to stdout
appender.console.type=Console
appender.console.name=STDOUT
appender.console.layout.type = PatternLayout

Version v2.1.0

appender.console.layout.pattern = %d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - Ym¥n

The next step is to configure Helm chart to use that config map. To override log4j configuration for all components, put
name of custom config map to global.logdjConfigMapOverride value. To provide different config maps for different

components put name of custom config maps to following values:

e for core pods - core.logdjConfigMapOverride

« for online store pods - onlinestore.logdjConfigMapOverride
« for spark operator pod - sparkoperator.logdjConfigMapOverride

o for spark driver/executor pods - sparkoperator.config.spark.logdjConfigMapOverride

o for telemetry pod - telemetry.log4jConfigMapOverride

Use different file for log4j configuration

By defaults feature store are looking for log4j2.properties file in /opt/h20ai/logdj directory. If it is required to
use different file instead (e.g. logdj2.xml), custom config map should contain that file and JAVA_LOG4J_PROPERTIES

environment variable has to be updated:
 fore core pods:

core:
env:
JAVA_LOG4J_PROPERTIES: /opt/h20ai/log4j/log4j2.xml

« for online store pods:

onlinestore:
env:
JAVA_LOG4J_PROPERTIES: /opt/h20ai/log4j/log4j2.xml

 for sparkoperator store pods:

sparkoperator:
env:
JAVA_LOG4J_PROPERTIES: /opt/h20ai/logdj/log4j2.xml

o for spark driver/executor pods

sparkoperator:
config:
spark:
extraOptions:

34

© 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

- spark.driver.extraJavaOptions="-Dlog4j2.configurationFile=file:///opt/h20ai/logdj/log4j2.xml"
- spark.executor.extraJavaOptions="-Dlog4j2.configurationFile=file:///opt/h20ai/log4j/log4j2.xml"

o for telemetry store pods:

telemetry:
env: /opt/h2o0ai/logdj/log4j2.xml

35 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

Testing

The subsequent processes are used to ensure the correctness of Feature Store deployments.

1. Deploy Feature Store with Helm

2. Generate User Personal Access Token
3. Create Kubernetes Secret

4. Helm Test

Deploy Feature Store with Helm

Version v2.1.0

Helm is the official way to install the Feature Store services. See Kubernetes Helm Charts for more details.

Generate Personal Access Token

For helm tests execution, the personal access token is required.

From UI

o Click Create PAT button (at right top corner)

H20.ai FEATURE STORE
Personal Access Token
@ Home
Setting > Personal Access Token
Projects ~
1 Personal Access Token
All Projects
My Projects test_main
I3 Feature Sets ~ for testing

All Feature Sets
My Feature Sets
Pending Feature Sets
Jobs ~
Jobs
Q Access Control ~
Project Permissions

Feature Set Permissions

& Setting A~
Personal Access Token
? Help A~

Help & Documentation

Copyright © 2023 H20.ai. All rights reserved.

e Fill up the fields which requires and click Create button

36

Last Used

2023-09-27T1

Expiry Date
2100-09-11T18.

main.user@feature-store.ai
User

Create PAT

Created At
2023-09-12T1.

© 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

H20.ai FEATURE STORE
Personal Access Token
@ Home
Settin Personal Access Token
£ Projects A~
F)
All Projects
My Projects
[3 Feature Sets ~

All Feature Sets
My Feature Sets

Pending Feature Sets

[Jobs ~
Jobs
Q Access Control ~

Project Permissions

Feature Set Permissions

& Setting ~
Personal Access Token
? Help ~

Help & Documentation

+2051

e Copy the token string

H20.ai FEATURE STORE
Personal Access Token
@ Home
i Personal Access Token
& Projects N
Persona « oken
All Projects
My Projects
I3 Feature Sets A

All Feature Sets
My Feature Sets

Pending Feature Sets

Jobs ~
Jobs
@ Access Control ~

Project Permissions

Feature Set Permissions

& Setting A~
Personal Access Token
? Help ~

Help & Documentation

Ha0ai

From Python client

token_str = client.auth.pats.generate(name="background_jobs", description="some description", expiry_date="<d

Copyright © 2023 H20.ai. All rights reserved.

Copyright © 2023 H20.ai. All rights reserved.

37

Create Personal Access Token

Personal Access Token > Create

Name *

Version v2.1.0

[My Token|

Description

Expire Date *

Sat Sep 30 2023

Create Personal Access Token

Personal Access Token > Create
Token

j5p_lccdd851f25ddbbb5e106be422439f1684ebb066

Create

o Make sure to copy your personal access token now as you will not be able

to see this again.

© 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Create Kubernetes Secret

Prior to running the Helm Test, the previously created personal access token should be passed as “Kubernetes Secret”
within your cluster.

kubectl create secret generic <<secret-name>> --from-literal=<<secret-key-name>>='"<<personal-access-
token>>"

Based on the helm values that you provided, the secret name and key name should be passed above.

Qparam test.userAuthTokenSecret Kubernetes secret name containing Test User's Personal Access Token used
Qparam test.userAuthTokenSecretKey Kubernetes secret name key containing Test User's Personal Access Token

Helm Test

helm test will start the test pod in your cluster, which conducts simple installation tests.
helm test <<release-name>> --timeout 15mOs

After a successful test run, this test pod will be deleted in accordance with the deletion policy.

38 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Configuration of Azure Active Directory client

Register your application on portal.azure.com
e Click App registrations on the left panel and select 4+ to setup a new registration
e Select single tenant as the account for this organization

e Give a name and a redirect uri

* —+ New registration & Endpoints 7 Troubleshooting L Download [l Preview features | < Got feedback?

I5 Preview features

X Diagnose and solve problems

© Try out the new App registrations search preview! Click to enable the preview. —

Manage
dh Users x
@ starting June 30th, 2020 we will no longer add any new features to Azure Active Directory Authentication Library (ADAL) and Azure AD Graph. We will continue to provide technical support and security updates but we will no longer provide
2 Groups feature updates. Applications will need to be upgraded to Microsoft Authentication Library (MSAL) and Microsoft Graph. Leam more
External Identities
4. Roles and administrators All applications ~ Owned applications Deleted applications (Preview)
& Administrative units D featurestore-dev %
B Enterprise applications
[Devices Display name Application (client) ID Created on Certificates & secrets
i App registrations #oo featurestore-dev . - 4/19/2021 @ current

Redirect uri:

https://web-dev-test.feature-store.h20.ai/Callback

Configuration of application object properties
Branding
Branding is where the logo, home page URL, and the publisher domain are configured.

Name ‘\D featurestore-dev
Logo
Upload new logo (O Select a file

Home page URL O

Terms of service URL (D e.g. https://example.com/termsofservice

Privacy statement URL (O e.g. https://example.com/privacystatement

Publisher domain (@ @arketplaceh20.onmicrosoft.cD

The application’s consent screen will show ‘Unverified'.
Learn more about publisher domain 7

Authentication
This is where you authenticate users for the application.
e Click the platform and select mobile and web applications
o Add a redirect uri (this is where the response token will be redirected to after authentication is complete)

e Select single tenant

39 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

e Set public clients to “INo” since public clients cannot keep secrets confidential

-+ Adda platform

~ Mobile and desktop applications

Redirect URIs

The URIs we will accept as destinations when returning authentication responses (tokens) after successfully authenticating users. Also re
more about Redirect URIs and their restrictions =

D https://login.microsoftonline.com/common/oauth2/nativeclient Hj
[:] https://login.live.com/oauth20_desktop.srf (LiveSDK) IE

D msal06c07597-798f-46de-8014-526047732152://auth (MSAL only) IE

https://web—dev-test.feature~store.h20.ai/CaIIbad<>

Add URI

Supported account types

Who can use this application or access this API?

@ Accounts in this organizational directory only (Default Directory only - Single tenant)

O Accounts in any organizational directory (Any Azure AD directory - Multitenant)

Advanced settings

Allow public client flows ©

Enable the following mobile and desktop flows: (Yes m

e App collects plaintext password (Resource Owner Password Credential Flow) Learn more /"
¢ No keyboard (Device Code Flow) Learn more!
e SSO for domain-joined Windows (Windows Integrated Auth Flow) Learn more "

API permissions

Add permissions to Microsoft Graph and the application (i.e., “featurestore-dev”).

40 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

API permissions =

() Refresh QO Got feedback?

0 The "Admin consent required" column shows the default value for an organization. However, user consent can be customized per permission, user, or app. This column may not reflect the value in your org:
app will be used. Learn more

Configured permissions

Applications are authorized to call APIs when they are granted permissions by users/admins as part of the consent process. The list of configured permissions should include
all the permissions the application needs. Learn more about permissions and consent

-+ Add a permission ~/ Grant admin consent for Default Directory

API / Permissions name Type Description Admin consent req... Status

\ featurestore-dev (1) Ll
user_impersonation Delegated user_impersonation No Lo

\ Microsoft Graph (1) ces
User.Read Delegated Sign in and read user profile No e

To view and manage permissions and user consent, try Enterprise applications.

Expose an API
Add a scope with consent for “admin and users” and name it “user__impersonation”.

Expose an APl =
&) save X Discard [ill Delete

Q Got feedback?
Scope name * @

[user_impersonat[onf I
api://06c07597-798f-46de-8014-526047732152/user_impersonation

l api://06¢07597-798f-46de-8014-526047732152

Scopes defined by this API Who can consent? ©

Define custom scopes to restrict access to data and functionality protected by the API. An application that requires access to parts of this Admins only

API can request that a user or admin consent to one or more of these. .)
Admin consent display name * ©

Adding a scope here creates only delegated permissions. If you are looking to create application-only scopes, use ‘App roles' and define app 1 ‘ user_impersonation
type. Go to App roles.

Admin consent description * ©

+ Adda scope user_impersonation

Scopes Who can consent Admin consent display ... ~ User consent display

2api;//06¢07597-798f-46de-8014-526047732152/user - E Admins and users user_impersonation .

User consent display name ©
e.g. Read your files 1

Authorized client applications User consent description (O
Authorizing a client application indicates that this API trusts the application and users should not be asked to consent when the client calls e.g. Allows the app to read your files.
this API.

~+ Add a client application State ©

Client Id Scopes

No client applications have been authorized

Owners

Add owners who are authorized to manage this registration.

41 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Name Email User name Job Title Type

] G H20 ai

Member

That’s it!

42 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Configuration of Keycloak for PAT exchange

Introduction

The configuration below is required when using the functionality of exchanging Personal Access Tokens (PAT) for access
tokens, for example, when using H20 Drive.

When user is authenticated via Feature Store personal access token, exchange between this PAT and platform access token
is required in case interacting with cloud components (Drive/GTPe).

Register new client in the realm

e Select realm from drop-down

e (lick Clients on the left panel and click Create client
e Select OpenID Connect in Client type

¢ Provide Client ID for example feature-store-pat

e Provide Name for example feature-store-pat

e Click Next

Clients > Create client

Create client
Clients are applications and services that can request authentication of a user.

0 General Settings Client type @ OpenlD Connect M

2 Capability config

. . ClientID * ® feature-store-dev-pat
3 Login settings

Name ®

Description @

Always display in Ul @ o off

e Select Client authentication
e Select Standard flow , Direct access grants, Service accounts roles
e Click Next

43 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Clients > Create client

Create client

Clients are applications and services that can request authentication of a user.

1 General Settings Client authentication o On
®
e Capability config
3 Login settings Authorization @ o Off
Authentication flow Standard flow ® Direct access grants @
D Implicit flow @ Service accounts roles @

[] OAuth 2.0 Device Authorization Grant ®

D OIDC CIBA Grant®

e Select Client authentication
e Select Standard flow , Direct access grants, Service accounts roles
e Click Next

After creating the client, click on tab Service accounts roles and assing role.

e Select impersonation role

44 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

Assign roles to feature-store-dev-pat

Y Filter by clients

Q, Search by role name

Name

realm-management

8 00

realm-management

realm-management

realm-management

realm-management

realm-management

realm-management

realm-management

realm-management

O 00000od

realm-management

create-client
impersonation
manage-authorization
manage-events
manage-identity-providers
manage-users
query-realms

realm-admin

view-clients

view-identity-providers

Version v2.1.0

1n-20 ~

Description

${role_create-client}
${role_impersonation}
${role_manage-authorization}
${role_manage-events}
${role_manage-identity-providers}
${role_manage-users}
${role_query-realms}
${role_realm-admin}
${role_view-clients}

${role_view-identity-providers}

n-20 ~ <

Deployment

Please start keycloak with parameter: -Dkc.features=token-exchange or KC_FEATURES=token-exchange

45

© 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Destroy the stack

helm uninstall feature-store

46 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Snowflake prerequisites

Steps

1.
2.
3.

4.

9.
6.

Create new user or use existing one (this user will be used for reading data to spark client)

Create new role, for example as: CREATE ROLE IF NOT EXISTS FS_READ_ONLY_ROLE

Grant usage to database that will be used to store feature sets for example: GRANT USAGE ON DATABASE <DB_NAME>
TO ROLE <ROLE_NAME>

Grant usage to schema that will be created in database GRANT USAGE ON SCHEMA <SCHEMA_NAME> TO ROLE
<ROLE_NAME>

Grant role to database GRANT SELECT ON FUTURE VIEWS IN DATABASE <DB_NAME> TO ROLE <ROLE_NAME>

Grant role to user GRANT ROLE <ROLE_NAME> TO USER <USER_NAME>

Use created user in helm values:

e global.storage.offline.snowFlake.readOnlyViewSparkUser
e global.storage.offline.snowFlake.readOnlyViewSparkPassword.

47 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Credentials configuration

To be able to read data from different data sources, you need to pass credentials either as a parameter to specific methods
or via environmental variables.

Specifying using environmental variable
AWS S3

« S3_ACCESS_KEY
o« S3_SECRET_ KEY
« S3_REGION

Note: An optional parameter, S3_ROLE_ARN, can be specified. If specified, an AWS IAM role that delegates access to the
bucket will be used.

Without an environmental variable or AWS credential, you are still able to access public S3 data.

Minio

« S3_ACCESS_KEY
e« S3_SECRET_KEY
o S3_REGION

o S3_ENDPOINT

Note: An optional parameter, S3_ROLE_ARN , can be specified. If specified, a Minio IAM role that delegates access to the
bucket will be used.

S3_ENDPOINT should be provided so that Feature Store can read from the corresponding Minio server.

JDBC Postgres

« JDBC POSTGRES USER
« JDBC_ POSTGRES_PASSWORD

JDBC Teradata

« JDBC_TERADATA_USER
« JDBC_TERADATA_PASSWORD

Azure credentials

Feature Store provides three variants for providing Azure Credentials

Azure name and key credentials

e AZURE_ACCOUNT_NAME is the name of the Azure storage account where the data source is stored.
e AZURE_ACCOUNT_KEY is the key for the Azure storage account where the data source is stored.

Azure SAS credentials

e AZURE_ACCOUNT_NAME is the name of the Azure storage account where the data source is stored.
o AZURE_SAS_TOKEN is the Shared Access Signature (SAS) token for the Azure storage account. It grants restricted
access to Azure Storage resources. You can use this form of authentication if provided with a SAS.

Azure principal credentials

e AZURE_ACCOUNT_NAME is the name of the Azure storage account where the data source is stored.

e AZURE_SP_CLIENT_ID is the client ID for an Azure Service Principal. It is used to identify and authenticate the
Service Principal when it requests access to Azure resources.

e AZURE_SP_TENANT_ID is the tenant ID for the Azure Active Directory tenant associated with the Service Principal.

e AZURE_SP_SECRET is the client secret for an Azure Service Principal.

48 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

S3 credentials

o S3_ACCESS_KEY is the Access Key ID for an Amazon S3 (Simple Storage Service) bucket.
e S3_SECRET_KEY is the Secret Access Key for the S3 bucket.
e S3_REGION is the AWS region where the S3 bucket is located.

Snowflake credentials

Feature Store provides two variants for providing Snowflake Credentials

Snowflake user and password credentials

e SNOWFLAKE_USER is the username for accessing the Snowflake database.
e SNOWFLAKE_PASSWORD is the password for the corresponding user account to authenticate the user when logging in to
the Snowflake database.

Snowflake key pair credentials
e SNOWFLAKE_USER is the username for accessing the Snowflake database.

e SNOWFLAKE_PRIVATE_KEY_FILE is the location of private key pem file on users local machine from where private key
is read and sent to Snowflake where is checked against public key part that’s stored in Snowflake.

e PRIVATE_KEY_PASSPHRASE in the case the private key pem file is encrypted a passphrase is needed.

Teradata credentials

e USER is the username for accessing the Teradata database.
e PASSWORD is the password for the corresponding user account to authenticate the user when logging in to the Teradata
database.

Postgres credentials

e USER is the username for accessing the PostgreSQL database.
e PASSWORD is the password for the corresponding user account to authenticate the user when logging in to the
PostgreSQL database.

GCP credentials

e GOOGLE_APPLICATION_CREDENTIALS environment variable will be evaluated and the corresponding credentials file
will be utilized by default

o Alternatively, user can create and use a GepCredentials instance by specifying his/her own file path pointing to
stored GCP credentials file.

Python

from featurestore import *
credentials = GcpCredentials.from_file(local_file_path)

Passing credentials as a parameters
Python

from featurestore import *

credentials = AzureKeyCredentials(AZURE_ACCOUNT_NAME, AZURE_ACCOUNT_KEY)

credentials = AzureSasCredentials(AZURE_ACCOUNT_NAME, AZURE_SAS_TOKEN)

credentials = AzurePrincipalCredentials(AZURE_ACCOUNT_NAME, AZURE_SP_CLIENT_ID, AZURE_SP_TENANT_ID, AZURE_SP_
credentials = S3Credentials(S3_ACCESS_KEY, S3_SECRET_KEY, S3_REGION)

credentials = SnowflakeCredentials(SNOWFLAKE_USER, SNOWFLAKE_PASSWORD)

credentails = SnowflakeKeyPairCredentials(SNOWFLAKE_USER, SNOWFLAKE_PRIVATE_KEY_FILE, PRIVATE_KEY_PASSPHRASE)
credentials = TeradataCredentials(USER, PASSWORD)

credentials = PostgresCredentials(USER, PASSWORD)

49 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Passing secrets to environment variables in Databricks Notebook
You can make use of Databricks dbutils package to inject secrets into environment variables.

The following example shows passing an Azure Storage Account Key from Databricks Secret Vault into the respective
environment variable as required by Feature Store.

import os
os.environ["AZURE_ACCOUNT_KEY"] = dbutils.secrets.get("<scope_name>", "<key_name>")

50 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Starting the client

Python
Once your Python environment is ready, run:

from featurestore import Client
client = Client(url, secure=False, root_certificates=None, config=config)

or

from featurestore import Client
with Client(url, secure=False, root_certificates=None, config=config) as client:

where:
o url - the endpoint address of the Feature Store Server as a string (usually in ip:port format).

e secure - turn on secure connection for Feature Store API. If you run Feature Store behind nginx-ingress (which
requires tls connection) make sure the secure flag is set to True. Client may also require root certificates.

e root_certificates - root certificates file location as a string or None to retrieve them from a default location
chosen by gRPC runtime.

e config - Additional client configuration. If not specified, defaults are used.
The following API can be used to enable or disable interactive logging. Logging is enabled by default.
client.show_progress(False)

Note: It’s good practice to close the connection after all action has proceeded. You should call client.close() or use
the context manager.

Client configuration

We can pass a config to the client constructor. The following examples show how to create the configuration and explain
what options can be specified.

Python
config = ClientConfig(wait_for_backend=True, timeout=, log_level=INF0)

e wait_for_backend - if False, client does not wait for the Feature Store Backend to be ready.

e timeout - client-side timeout in seconds to terminate long waiting grpc calls.

e log_level - Logging level to be used on the Python client. Supported values are CRITICAL, ERROR, WARNING, INFO
and DEBUG.

Note: The client configuration is stored by default in the user’s home directory. You can change this location by setting
the FEATURESTORE_USER_CONFIG environmental variable to the desired location before starting the client.

Obtaining version

Both client and server version is printed out after client is created to standard output.
Versions can also be obtained by calling the following method:
Python

client.get_version()

Open Web Ul

This method opens the Feature Store Web UL
Python

client.open_website()

51 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Default naming rules

Feature Store is configured to adhere to the following restrictions on setting names for a project or a feature set:
e name must be between 3 and 30 characters long.
« name can only use lowercase letters, numbers, and special character “_” (underscore).
o name must begin with a letter or a number (not underscore).
e each underscore must be preceded and followed by a letter or a number.
e name cannot have spaces.
e project name must be unique across all projects.

o feature set name must be unique across all feature sets within a project.

52 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Authentication

Feature Store CLI provides 3 forms of authentication:
e Access token from external environment
e Refresh token from identity provider
o Personal Access Tokens (PATs)
All authentication-related methods can be called on the auth object on the client object (e.g., client.auth.logout()).
You can also get the currently logged-in user:
Python

client.auth.get_active_user()

Access token from external environment

If you are running Feature Store in an environment which already takes care of the client authentication and makes access
tokens available, you need to implement a method which returns the access token from the environment and passes it to
client.set_obtain_access_token_method. This is the same for H20 Wave.

This ensures that during each call, Feature Store obtains a valid access token from the external environment and uses it for
authentication.

Refresh token from identity provider

First, we need to obtain the refresh token. We can achieve this by executing the login method.
Python

client.auth.login()

This method will try to open the returned URL in the browser (if this fails, the user has to do this manually) and wait for
the refresh token. Returned refresh tokens will be saved into the client’s configuration file. The client configuration file is
stored in your home directory under the name .featurestore.config. The format of the file is key=value. If you wish,
you can also set the token in the configuration file by using key token directly.

You won'’t be asked for the authentication again until this token expires.

Personal access tokens (PATS)

In order to create a personal access token, you first need to be logged-in via one of the previously mentioned methods.

Once logged-in, you can create a personal access token:

Python

token_str = client.auth.pats.generate(name="background_jobs", description="some description", expiry_date="",
Explanation of the parameters:

Python

o expiry_date is optional. When provided, it should be in the format dd/MM/yyyy. Tokens without expiry date will
get an expiry date according to maximal allowed token duration which is a parameter controlled by a Feature Store
administrator. To find out its actual value, call client.auth.pats.mazximum__allowed_token__duration.

e timezone is optional. If provided, the provided timezone overrides the system timezone of CLI environment.

This call returns the textual representation of the token. It is not possible to obtain the textual representation of the
token again, so save it in a secure location.

You can now use this token for authentication:
Python

client.auth.set_auth_token(token_str)

53 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

You can list existing token objects:

Version v2.1.0

The query argument is optional and specifies which access tokens should be returned. By default, no filtering options are

specified. To filter tokens by name or description please use query parameter.

Python

client.auth.pats.list(query = None)
You can obtain a particular token object:
Python

token = client.auth.pats.get(token_id)
Note: Token id is different from token name.
You can revoke the token:

Python

token.revoke ()

Note: The Feature Store admin can configure the max.pat.number.per.user option to limit the number of personal

access tokens one user can have at a single time.

54

© 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Permissions

Permissions determine the level of access that a user has to various components of the Feature Store. For example,
depending on the level of permission granted, a user may be authorized to edit feature sets, while another user with limited
view-only permission can only observe the feature set.

Levels of permission
Feature Store has five levels of permission:

e Owner

o Editor

e Consumer

e Sensitive consumer
e Viewer

Additionally, Feature Store also has the concept of an admin account. An admin is any user with the admin role specified
in their identity provider. Admin users can perform additional management tasks.

Note: The name of the claim storing the roles and name of admin role is configurable during Feature Store deployment.

Owner
Owner permission for a project

You become the owner by creating a project. As the owner, you can remove the project and assign the owner, editor,
consumer, sensitive consumer or viewer permission levels to other users. If you are the project owner, you are automatically
granted owner permissions to all the feature sets within that project.

Owner permission for feature sets

You become the owner by creating a feature set. As the owner, you can remove the feature set and assign the owner,
editor, consumer, sensitive consumer or viewer permission levels to other users.

Note: As the owner, you have all the other permissions.

« Editor

e Sensitive consumer
e Consumer

e Viewer

Editor
Editor permission for a project

If you have editor permission for a project in the Feature Store, you are authorized to update the project’s metadata and
register new feature sets within the project. As the editor of the project, you are automatically granted owner permission
for all feature sets associated with the project.

Editor permission for feature sets

If you have editor permission for a feature set, you are authorized to update the feature set’s metadata and call ingest on
the feature set.

Note: As an editor, you also have the following permissions,

¢ Sensitive consumer
o Consumer
e Viewer

Sensitive consumer

Sensitive consumer permission for a project

If you have sensitive consumer permission for a project in the Feature Store, you are authorized to list or obtain a feature
set from the project. As the sensitive consumer of the project, you are automatically granted sensitive consumer permission
for all feature sets associated with the project.

55 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Sensitive consumer permission for feature sets

If you have sensitive consumer permission for a feature set, you are authorized to call retrieve on the feature set. The
retrieved data contains data in its original, unmasked variant (raw data).

Note: As an sensitive consumer, you also have the following permissions,
e Consumer
e Viewer

Consumer

Consumer permission for a project

If you have consumer permission for a project in the Feature Store, you are authorized to list or obtain a feature set from
the project. In other words, as a consumer of a project, you can retrieve data from all feature sets. As the consumer of the
project, you are automatically granted consumer permission for all feature sets associated with the project.

Consumer permission for feature sets

If you have consumer permission for a feature set, you are authorized to call retrieve on the feature set. Among retrieved
features, only masked features will be displayed as hashed values.

Note: As an consumer, you also have the following permission,

o Viewer

Viewer
Viewer permission for a project

If you have viewer permission for a project in the Feature Store, you are authorized to see what feature sets are within the
project. This behaviour is also influenced by the Project Access Modifiers.

Viewer permission for feature sets

This permission allows you to get feature set and various information about it.

Project Access Modifiers

Access modifiers on project modifies what users additionally can do. Access modifiers are internally reflected by permissions.
Please see Projects for more information.

Project permission API

Add permissions to the project

To add additional owners to the project, call:

Python

project.add_owners(["bob@h20.ai", "alice®h20.ai"])

To add additional editors to the project, call:

Python

project.add_editors(["bob@h20.ai", "alice@h2o0.ai"])
To add additional consumers to the project, call:

Python

project.add_consumers(["bob@h20.ai", "alice@h20.ai"])
To add additional sensitive consumers to the project, call:
Python

project.add_sensitive_consumers(["bob@h20.ai", "alice®@h20.ai"])

56 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

To add additional viewers to the project, call:
Python

project.add_viewers(["bob@h20.ai", "alice@h2o0.ai"])

Remove permissions from the project

To remove owners from the project, call:

Python

project.remove_owners(["bobCh20.ai", "alice@h20.ai"])

To remove editors from the project, call:

Python

project.remove_editors(["bob@h20.ai", "alice@h2o0.ai"])
To remove consumers from the project, call:

Python

project.remove_consumers(["bob@h20.ai", "alice@h20.ai"])
To remove sensitive consumers from the project, call:

Python
project.remove_sensitive_consumers(["bob@h20.ai", "alice@h20.ai"])
To remove viewers from the project, call:

Python

project.remove_viewers(["bob@h20.ai", "alice@h20.ai"])

Request permissions to a project

When cooperating with several users on a project, you may not have a specific permission (i.e., owner/editor/consumer/sen-
sitive consumer) for that project. You can request a specific permission from the project owner.

To begin, check your current access rights:
Python

from featurestore.core.access_type import AccessType
my_access_type = project.current_permission
returns None in case the user has no access to the project

If your level of permission is not sufficient for your needs, you can request the project owner for access rights:
Python

my_request_id = project.request_access(AccessType.CONSUMER, "Preparing the best model")

You can track your pending permission requests from the clients API:

Python

my_requests = client.acl.requests.projects.list()

When you can no longer see your request, this means it has been processed. To view the result of your request, call:
Python

my_permissions = client.acl.permissions.projects.list(filters)

The filters argument is optional and specifies which permissions state(s) you are interested in. Its default value is
PermissionState. GRANTED (which is the most common case). If you do not find your original request granted, it was
most likely either rejected or was granted and then revoked.

To verify the status of your request, specify using the corresponding filters. For example:

57 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Python
filters = [PermissionState.REJECTED]

In case you changed your mind or situation changed, and you don’t need access to the project anymore then you can
cancel your request before it was processed by withdrawing it.

Python

my_requests = client.acl.requests.projects.list()
request = ... # take a request based on your needs
request.withdraw()

Manage permission requests from other users

As a project owner, a user can request access to that project from you.

To list the requests pending for you to handle, call:

Python

manageable_requests = client.acl.requests.projects.list_manageable()
You can then take an item from the returned list and either approve it:
Python

manageable_requests = client.acl.requests.projects.list_manageable()
oldest_request = # select an item from manageable_requests
oldest_request.approve("it will be fun")

or reject it:
Python

manageable_requests = client.acl.requests.projects.list_manageable()
oldest_request = # select an item from manageable_requests
oldest_request.reject("it's not ready yet")

You can also revoke previously granted access to a project.

First, list the existing permissions that you handle:

Python

manageable_permissions = client.acl.permissions.projects.list_manageable()
Then, select the permission you want to revoke from the returned list:

Python

manageable_permission = ... # select an item from manageable_permissions
manageable_permission.revoke("user left the project")

The returned request and permission objects from the 1ist() and list_manageable() method calls contain convenient
methods for accessing the internal state (the following code is not exhaustive):

Python

manageable_requests = client.acl.requests.projects.list_manageable()
manageable_request = # select an item from manageable_requests

manageable_request.requestor() # only on manageable objects
manageable_request.access_type()

manageable_request.status()

manageable_request.reason()

manageable_request.created_on()

manageable_request.resource_type() # requested resource type, PROJECT or FEATURE_SET
manageable_request.get_resource() # returns corresponding feature set/project

58 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Feature set permissions API
Add permissions to the feature set

In order to add feature set permissions (owner / editor / consumer / sensitive consumer), those users should already
have the project consumer permission.

For the following examples, “bob@h20.ai” and “alice@h2o0.ai” should already have consumer permissions to the project
which consists of the respective feature set.

To add additional owners to the feature set, call:

Python

fs.add_owners(["bob@h20.ai", "alice@h20.ai"])

To add additional editors to the feature set, call:

Python

fs.add_editors(["bob@h20.ai", "alice@h20.ai"])

To add additional consumers to the feature set, call:

Python

fs.add_consumers(["bob@h20.ai", "alice®@h2o0.ai"])

To add additional sensitive consumers to the feature set, call:
Python

fs.add_sensitive_consumers(["bob@h20.ai", "alice@h2o0.ai"])
To add additional viewers to the feature set, call:

Python

fs.add_viewers(["bob@h20.ai", "alice@h2o0.ai"])

Remove permissions from the feature set

To remove owners from the feature set, call:

Python

fs.remove_owners(["bob@h20.ai", "alice®@h2o0.ai"])

To remove editors from the feature set, call:

Python

fs.remove_editors(["bob@h20.ai", "alice®@h2o0.ai"])
To remove consumers from the feature set, call:

Python

fs.remove_consumers(["bob@h20.ai", "alice®@h20.ai"])
To remove sensitive consumers from the feature set, call:
Python
fs.remove_sensitive_consumers(["bob@h20.ai", "alice@h20.ai"])
To remove viewers from the feature set, call:

Python

fs.remove_viewers(["bob@h20.ai", "alice@h2o0.ai"])

59 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Request permissions to a feature set

Feature set permissions follow the same structure and reasoning as project permissions. The following is a short list of
available methods.

To list current feature set permissions, call:
Python

from featurestore.core.access_type import AccessType
my_access_type = fs.current_permission
returns None in case the user does not have access to the project

To request feature set permissions, call:

Python

my_request_id = fs.request_access(AccessType.CONSUMER, "Preparing the best model")
To list pending requests, call:

Python

my_requests = client.acl.requests.feature_sets.list()

To withdraw a pending request, call:

Python

my_requests = client.acl.requests.feature_sets.list()
request = ... # take a request based on your needs
request.withdraw()

To list granted (without passing an argument) or rejected/revoked (with provided corresponding filters argument)
permissions, call:

Python

filters = [PermissionState.REJECTED]
my_permissions = client.acl.permissions.feature_sets.list(filters)

Manage feature set permissions

Feature set permissions follow the same structure and reasoning as project permissions. The following is a short list of
available methods.

To list and approve/reject a pending feature set permission request, call:
Python

manageable_requests = client.acl.requests.feature_sets.list_manageable()
manageable_request = # select an item from manageable_requests
manageable_request.approve("it will be fun")

or

manageable_request.reject("not yet ready")

To list and revoke an existing feature set permission, call:
Python

manageable_permissions = client.acl.requests.feature_sets.list_manageable()
manageable_permission = ... # select an item from manageable_permissions
manageable_permission.revoke("user left project")

60 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Projects API

Listing projects

To list all projects, call:
Python
client.projects.list()

This method returns a Python generator which can be used to lazily iterate over all projects.

Listing feature sets across multiple projects

Each project entity allows you to list projects in it as:

Python

client.projects.get("..").1list()

however this only lists feature sets in that specific project. To list feature sets across multiple projects, run:
Python

client.projects.list_feature_sets(["project_name_A", "project_name_B"])

The single argument of this method is always an array containing the names of projects in which to perform the feature
set search.

Note: The list method does not return feature sets directly, but instead returns an iterator which obtains the feature sets
lazily.

Create a project

To create a project, call:

Python

project = client.projects.create(project_name="project", description="description", access_modifier=AccessMod

To see naming conventions for project names, visit Default naming rules.

Project Access Modifier
AccessModifier can be passed when creating a project or during updating a project. Available values are:

e Public - means that every user in the system can see this project and feature sets within the project.

e ProjectOnly - means that every user can see the project, but only users with viewer permission can see feature sets
within this project.

e Private - means that only owner and users the owner gave permission to can access this project and feature sets
within.

Default value is AccessModifier .PRIVATE.

Get an existing project

To get an existing project, call:
Python

project = client.projects.get("project")

Remove a project
To remove the project, call:
Python

project.delete()

61 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

This will remove all feature sets and features stored inside this project.

Update project fields
The following fields are modifiable on the project api:
Python

- description
- custom_data

To update the field, simply call the setter of that field. For example, to update the description, call:
Python

project.description = "Better description"

To retrospectively find out who and when updated project, call:

Python

project.last_updated_by
project.last_updated_date_time

To see how to set permissions on projects, visit Authentication.

Listing project users

From project owner’s perspective, it may be needed to understand who is actually allowed to access and modify the given
project. Therefore, there are convenience methods to list project users according to their rights. Each of these methods
returns list of users that have specified or higher rights, their actual access rights and a resource type specifying, where the
access right permission comes from.

Note: The list method does not return users directly. Instead, it returns an iterator which obtains the users lazily.
Python

listing users by access rights

project = client.projects.get("training project")

owners = project.list_owners()

editors = project.list_editors()

sensitive_consumers = project.list_sensitive_consumers ()
consumers = project.list_consumers()

viewers = project.list_viewers()

accessing returned element
owner = next(owners)
owner.user

owner.access_type
owner.resource_type

Open project in Web Ul

This method opens the given project in Feature Store Web UI.
Python

project.open_website()

62 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Schema API

A schema is extracted from a data source. The schema represents the features of the feature set.

Creating the schema
Python
e create_from is available on the Schema class and is used to create a schema instance from a string formatted schema

e create_derived_from is available on the Schema class and is used to create a derived schema instance from a string
formatted schema and parent feature set along with transformation

e to_string is available on a schema instance and is used to serialise the schema object to string format

Usage

Create a schema from a string

A schema can be created from a string format:
Python

from featurestore import Schema
schema = "coll string, col2 string, col3 integer"
schema = Schema.create_from(schema)

Create a derived schema from a string

Python

from featurestore import Schema

import featurestore.transformations as t

spark_pipeline_transformation = t.SparkPipeline("...")

schema_str = "id INT, text STRING, label DOUBLE, state STRING, date STRING, words ARRAY"

schema = Schema.create_derived_from(schema_str, [parent_feature_set], spark_pipeline_transformation)

Create a schema from a data source
A schema can also be created from a data source. To see all supported data sources, see Supported data sources.

Python

schema = client.extract_schema_from_source(source)
schema = Client.extract_schema_from_source(source, credentials)

Note: An optional parameter, credentials , can be specified. If specified, these credentials are used instead of
environmental variables.

Create a schema from a feature set

Python

feature_set = project.feature_sets.get("example")

schema = Schema.create_from(feature_set)

Create a derived schema from a parent feature set with applied transformation

A derived schema can be created from an existing feature set using selected transformation. To see all supported
transformations, see Supported derived transformation.

Python

import featurestore.transformations as t
spark_pipeline_transformation = t.SparkPipeline("...")

schema = client.extract_derived_schema([parent_feature_set], spark_pipeline_transformation)

63 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Load schema from a feature set

You can also load a schema from an existing feature set:
Python

schema = feature_set.schema.get ()

Create a new schema by changing the data type of the current schema
Python

from featurestore.core.data_types import STRING
schema["col"] .data_type = STRING

nested columns

schema["col1"] .schema["col2"] .data_type = STRING

Create a new schema by column selection
Python

schema.select (features)
schema.exclude (features)

Create a new schema by adding a new feature schema
Python

from featurestore.core.data_types import STRING

from featurestore import FeatureSchema

new_feature_schema = FeatureSchema("new_name", STRING)

Append

schema.append (new_feature_schema) # Append to the end

schema.append (new_feature_schema, schema["old"]) # Append after old

Prepend

new_schema = schema.prepend(new_feature_schema) # Prepend to the beginning
new_schema schema.prepend (new_feature_schema, schema["0ld"]) # Prepend before old

Modify special data on a schema
Python

schema["coll"] .special_data.sensitive = True
schema["col2"] .special_data.spi = True

Nested feature modification

schema["col3"] .schema["col4"] .special_data.pci = True

Note: Available special data fields on the Schema object are spi, pci, rpi, demographic and sensitive. These are
boolean fields and can be either set with true/false.

Modify feature type
Python

from featurestore.core.entities.feature import *
schema["coll"] .feature_type = NUMERICAL
schema["col2"] .feature_type = AUTOMATIC_DISCOVERY
Nested feature modification

schema["col3"] .schema["col4"].feature_type = TEXT

The AUTOMATIC_DISCOVERY means that the feature type will be determined on the backend side based on the feature data
type automatically. AUTOMATIC_DISCOVERY is the default value for all the schema’s feature types.

64 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Set feature description
It is also possible to provide a description for a feature schema. This description is propagated to the feature.
Python

schema["coll"] .description = "The best feature"

Set feature classifier

Features in a feature set can be tagged by a classifier from a predefined list. The classifier on the feature denotes the type
of data stored in the feature.

Python

client.classifiers.list() # this returns all configured classifiers on the backend
schema["coll"].classifier = "emailIqd"

Save schema as string

A schema can be serialized to string format:

Python

str_schema = schema.to_string()

65 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Feature set API

Registering a feature set
To register a feature set, you first need to obtain the schema. See Schema API for information on how to create the schema.
Python

project.feature_sets.register(schema, "feature_set_name", description="", primary_key=None, time_travel_colun
MM-dd HH:mm:ss", partition_by=None, time_travel_column_as_partition=False, flow=None)

If the partition_by argument is not set, the time travel column will be used by Feature Store to partition the layout
by each ingestion. If it is defined, time_travel_column_as_partition can be set to True to use time travel based
partitioning additionally.

Note: The feature_sets.register, and feature_set.flow methods use the enum FeatureSetFlow. Enum (enumera-
tion) is a fundamental concept in programming languages that allow developers to define a set of named values. They
provide a convenient way to group related values and make code more readable and maintainable.

If the flow argument is set, it will influence where data is stored. Following values (from enum FeatureSetFlow) are
supported:

o FeatureSetFlow.OFFLINE__ONLY - data is stored only in offline feature store. Online ingestion and material-
ization is disabled.

o FeatureSetFlow.ONLINE__ONLY - data is stored only in online feature store. Offline ingestion and materialization
is disabled.

e FeatureSetFlow.OFFLINE__ONLINE__MANUAL - data is stored in both offline and online Feature Store, but
automatic materialization to online is disabled. That means propagating data between online to offline is automated,
but offline to online is manual and must be triggered by online materialization call.

¢ FeatureSetFlow.OFFLINE_ONLINE_AUTOMATIC - data is stored in both offline and online Feature Store,
and automatic materialization to online is enabled. That means this is used to automatically propagate data between
offline - online and online - offline. You don’t have to call materialize_online as it is done automatically.

Note: In case primary key or partition by arguments contain same feature multiple times, only distinct values are used.

Note: If value in primary key or partition by or time travel column corresponds to two or more features, most nested is
selected by default. In other cases, specific feature can be selected by enclosing the feature name in “

For example, feature set contains feature named “test.data” and second feature “test” with nested feature “data”. But
default for value “test.data”, nested feature “data” will be selected. If feature with name “test.data” should be selected,
value should be changed to “‘test.data’”

Note: Feature Store is using time format used by Spark. Specification is available here.

Note: If users wants to create feature sets which are accessible only by the owner and users the owner gave permission to,
that feature set should be created in a private project.

To see naming conventions for feature set names, please visit Default naming rules.

To register a derived feature set, you first need to obtain the derived schema. See Schema API for information on how to
create the schema.

Python

import featurestore.transformations as t

spark_pipeline_transformation = t.SparkPipeline("...")

derived_schema = client.extract_derived_schema([parent_feature_set], spark_pipeline_transformation)
project.feature_sets.register(derived_schema, "derived_feature_set", description="", primary_key=None, time_t
MM-dd HH:mm:ss", partition_by=None, time_travel_column_as_partition=False)

Features can be masked by setting Special Data fields in the schema. For further information, please visit Modify special
data on a schema.

Setting any of the following attributes to true marks the feature for masking:

e spi - Sensitive Personal Information

66 © 2024 H20.ai, Inc. All rights reserved.

https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html

H20 Feature Store Version v2.1.0

e pci - Payment Card Industry
e rpi - Real Property Inventory
e demographic

e sensitive

Any of the special data tags would allow for the masking functionality to work and separate sensitive consumer output
(e.g. unmasked data) from the masked view that the consumer role sees. Which tag is selected is more bookkeeping than
leading to different functionality.

Note: Feature Store does not support registering feature sets with the following characters in column names:

*

H
e {or}

e (or)

e new line character
e tab character

Time travel column selection

You can specify a time travel column during the registration call. If the column is specified, Feature Store will use that
column to obtain time travel data and will use it for incremental ingest purposes. The explicitly passed time travel column
must be present in the schema passed to the registration call.

If the time travel column is not specified, a virtual one is created, so you can still do time travel on static feature sets.
Each ingestion to this feature set is treated as a new batch of data with a new timestamp.

Use the following register method argument to specify the name of the time travel column explicitly:
Python

time_travel_column

Inferring the data type of date-time columns during feature set registration

File types without schema information: For file types that have no metadata about column types (e.g., CSV), Feature
Store detects date-time columns as regular string.

File types containing schema information: For file types that keep information about the data types (e.g., Parquet),
Feature Store respects those types. If a date-time column is stored with a type of Timestamp or Date, Feature Store will
respect that during the registration.

Listing feature sets within a project

Note: The list method does not return feature sets directly. Instead, it returns an iterator which obtains the feature sets
lazily.

Python
project.feature_sets.list(query=None, advanced_search_options=None)

The query and advancedSearchOption arguments are optional and specify which feature sets should be returned. By
default, no filtering options are specified.

To filter feature sets by name, description or tags please use query parameter.

Python

project.feature_sets.list(query="My feature")

The advancedSearchOption allows to filter feature sets by feature name, description or tags.
To provide the ‘advancedSearchOption’ in your requests, follow these steps:

Python

67 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

from featurestore.core.search_operator import SearchOperator

from featurestore.core.search_field import SearchField

from featurestore import AdvancedSearchOption

search_options = [AdvancedSearchOption(search_operator=SearchOperator.SEARCH_OPERATOR_LIKE, search_field=Sear
project.feature_sets.list(advanced_search_options=search_options)

Both parameters could be used together.

You can also list all major versions of the feature set:

Python

fs.major_versions()

This call shows all major versions of the feature set (the current and previous ones).
You can also list all versions of the feature set:

Python

fs.list_versions()

This call shows all versions of the feature set (the current and previous ones).

Obtaining a feature set

Python

fs = project.feature_sets.get("feature_set_name", version=None)

If the version is not specified, the latest version of the feature set is returned.

You can also get the latest minor version of feature set for given major version

Python

fs = project.feature_sets.get_major_version("feature_set_name", 2)

It is also possible to obtain different version of a feature set from some feature set instance as:
Python

fs = feature_set.get_version("2.1")

Previewing data
You can preview up to a maximum of 100 rows and 50 features.
Python

fs.get_preview()

Setting feature set permissions

Refer to Permissions for more information.

Deleting feature sets
Python

fs = project.feature_sets.get("name")
fs.delete()

68 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Deleting feature set major versions
Python

fs = project.feature_sets.get("name")
major_versions = fs.major_versions()
major_versions[0] .delete()

Updating feature set fields
To update the field, simply call the setter of that field, for example:
Python

fs = project.feature_sets.get("name")
fs.deprecated = True
fs.time_to_live.offline = 2
fs.special_data.legal.approved = True

fs.special_data.legal.notes = "Legal notes"
fs.features["col"] .special_data.legal.approved = True
fs.features["col"] .special_data.legal.notes = "Legal notes"

Add a new tag to the feature set
fs.tags.append("new tag") # This will add the new tag to the list of existing tags
Add new tags that will overwrite any existing tags

fs.tags = ["new tag 1", "new tag 2"] # This will overwrite the existing tags with the given list of values
Assigning a string to tags is not supported
fs.tags = "new tag" # This operation is not supported as tags accepts only a list of strings as input

Add a new value to the data source domains on the feature set
fs.data_source_domains.append("new domain") # This will add the new domain to the list of existing domains
Add new domains that will overwrite any existing domains

fs.data_source_domains = ["new domain 1", "new domain 2"] # This will overwrite the existing domains with the
Assigning a string to domain is not supported
fs.data_source_domains = "new domain" # This operation is not supported as domain accepts only a list of stri

Feature type can be changed by:
Python

from featurestore.core.entities.feature import CATEGORICAL
fs = project.feature_sets.get("name")

feature = fs.features["feature"]
my_feature.profile.feature_type = CATEGORICAL

The following list of fields can be updated on the feature set object:
Python

- tags

- data_source_domains

- feature_set_type

- description

- application_name

- application_id

- deprecated

- process_interval

- process_interval_unit

- flow

- feature_set_state

- time_to_live.ttl_offline

- time_to_live.ttl_offline_interval
- time_to_live.ttl_online

- time_to_live.ttl_online_interval
- special_data.legal.approved

69 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

- special_data.legal.notes

- feature[].status

- feature[] .profile.feature_type

- feature[].importance

- feature[] .description

- feature[].special

- feature[] .monitoring.anomaly_detection
- feature[].classifiers

Note:

e feature_set_type has two values, RAW or ENGINEERED. It denotes whether the feature set was derived from raw or
processed data. This classification exists for information purposes and does not affect Feature Store behavior.

e time_to_live is currently respected for data in online feature store only. It indicates the duration for which records
remain stored before they are evicted.

To retrospectively find out who and when updated a feature set, call:
Python

fs.last_updated_by
fs.last_updated_date_time

Recommendation and classifiers

Refer to the Recommendation API for more information.

New version API

Refer to the Create new feature set version API for more information.

Feature set schema API

Getting schema

To get feature set’s schema, run:

Python

fs = project.feature_sets.get("gdp")

fs.schema.get ()

Checking schema compatibility

To compare feature set’s schema with the new data source’s schema, run:
Python

fs = project.feature_sets.get("gdp")
new_schema = client.extract_schema_from_source()
fs.schema.is_compatible_with(new_schema, compare_data_types=True)

Parameters explanation:

Python
e new_schema new schema to check compatibility with.
o compare_data_types accepts True/False, indicates whether data type needs to be compared or not.
e If compare_data_types is True, then data types for features with same name will be verified.

e If compare_data_types is False, then data types for features with same name will not be verified.

70 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Patching new schema

Patch schema checks for matching features between the ‘new schema’ and the existing ‘fs.schema’. If there is a match, then
the meta data such as special data, description etc are copied into the new__schema

To patch the new schema with feature set’s schema, run:
Python

fs = project.feature_sets.get("gdp")
new_schema = client.extract_schema_from_source()
fs.schema.patch_from(new_schema, compare_data_types=True)

Parameters explanation:
Python
e new_schema new schema that needs to be patched.
o compare_data_types accepts True/False, indicates whether data type are to be compared while patching.

o If compare_data_types is True, then data type from feature set schema is retained for features with same name
and different types.

e If compare_data_types is False, then data type from new schema is retained for features with same name and
different types.

Offline to online API

To push existing data from offline Feature store into online, run:
Blocking approach:

Python

feature_set.materialize_online()

Non-Blocking approach:

Python

future = feature_set.materialize_online_async()

Note: Feature set must have a primary key and time travel column defined in order to materialize the offline store into
online.

More information about asynchronous methods is available at Asynchronous methods.

Subsequent calls to materialization only push the new records since the last call to online.

Online to offline API

There is a background process that periodically starts online to offline ingestion, but in case there is a need to push existing
data from online Feature store into offline earlier than scheduled, then run:

Blocking approach:

Python
feature_set.start_online_offline_ingestion()
Non-Blocking approach:

Python

job = feature_set.start_online_offline_ingestion_async()

71 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Feature set jobs API

You can get the list of jobs that are currently processing for the specific feature set by running:
Python

You can also retrieve a specific type of job by specifying the job_type parameter.

from featurestore.core.job_types import INGEST, RETRIEVE, EXTRACT_SCHEMA
fs.get_active_jobs()
fs.get_active_jobs(job_type=INGEST)

Refreshing feature set

To refresh the feature set to contain the latest information, call:
Python

fs.refresh()

Getting recommendations
To get recommendations, call:
Python
fs.get_recommendations()
The following conditions must hold for recommendations:
e The feature set must have at least one or more classifiers defined.

e The results will be based on the retrieve permissions of the user.

Marking feature as target variable

When feature sets are used to train ML models, it can be beneficial to know which feature was used as model’s target
variable. In order to communicate this knowledge between different feature set users, there is a possibility to mark/discard
a feature as a target variable and list those marked features.

Python

feature_state = fs.features["state"]
feature_state.mark_as_target_variable()

fs.list_features_used_as_target_variable()

feature_state.discard_as_target_variable()

Listing feature set users

From feature set owner’s perspective, it may be needed to understand who is actually allowed to access and modify the
given feature set. Therefore, there are convenience methods to list feature set users according to their rights. Each of these
methods returns list of users that have specified or higher rights, their actual access rights and a resource type (project or
feature set) specifying, where the access right permission comes from.

Note: The list method does not return users directly. Instead, it returns an iterator which obtains the users lazily.
Python

listing users by access rights

fs = project.feature_sets.get("training_fs")

owners = fs.list_owners()

editors = fs.list_editors()

sensitive_consumers = fs.list_sensitive_consumers()
consumers = fs.list_consumers()

viewers = fs.list_viewers()

72 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

accessing returned element
owner = next(owners)
owner.user

owner.access_type
owner.resource_type

Derived feature sets

As mentioned in the beginning, a (derived) feature set can be defined in terms of other features sets and a transformation.
There are several convenience methods that help you find out a lineage of a given feature set.

Note:

« In the Feature Store, lineage is preserved by tracking the ingest history. This allows users to identify the data source
from which the ingest occurred.

e Users can create derived feature sets which are transformations of existing feature sets. This relationship is also
preserved within the Feature Store.

Is the feature set a derived one or not?

Python

fs.is_derived()

Which feature sets were used to define this derived feature set?

Python

parent_feature_sets = fs.get_parent_feature_sets()

To get a list of derived feature set(s) that were build upon this feature set.
Python

derived_feature_sets = fs.get_derived_feature_sets()

Open feature set in Web Ul

This method opens the given feature set in Feature Store Web UL
Python

fs.open_website()

Optimizing feature set storage (Delta lake backend only)

In special cases, there can be a performance benefit when a feature set’s data gets optimized. In order to manually enforce
a storage optimization use following call. By default, feature set storage gets optimized by Z-order optimization for primary
key(s). In case an optimization for different feature’s list is needed, you can specify the optimization explicitly when
making the call.

The optimization call returns optimization metrics provided by storage. Furthermore, a new minor feature set version gets
created. The updated feature set version contains optimization input as one of its attributes.

Python

z-order optimization for primary key(s) by default
response = fs.optimize_storage()

show response details
response.optimization_metrics

z-order optimization for specific columns
fs.optimize_storage(ZOrderByOptimization(["name", "age"]))

73 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

refresh version and show optimization input
fs.refresh()
fs.storage_optimization

74 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Feature API

Feature statistics

Feature can have several feature types:

o TEXT

o CATEGORICAL
« NUMERICAL

« TEMPORAL

« COMPOSITE

For feature of type CATEGORICAL, categorical statistics are computed. For feature of type NUMERICAL, numerical statistics
are computed.

75 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Ingest API

Feature store ensures that data for each specific feature set does not contain duplicates. That means that only data which
are unique to the feature set cache are ingested as part of the ingest operation. The rows that would lead to duplicates are
skipped.

Ingest can be run on instance of feature set representing any minor version. The data are always ingested on top of latest
storage stage.

Offline ingestion

To ingest data into the Feature Store, run:
Blocking approach:

Python

fs = project.feature_sets.get("gdp")
fs.ingest (source)
fs.ingest(source, credentials=credentials)

Note: This method is not allowed for derived feature sets.
Non-Blocking approach:
Python

fs = project.feature_sets.get("gdp")
future = fs.ingest_async(source)
fs.ingest_async(source, credentials=credentials)

Note: This method is not allowed for derived feature sets.

More information about asynchronous methods is available at Asynchronous methods.
Parameters explanation:

Python

e source is the data source where Feature Store will ingest from.

e credentials are credentials for the data source. If not provided, the client tries to read them from environmental
variables. For more information about passing credentials as a parameter or via environmental variables, see
Credentials configuration.

To ingest data into feature store from sources that gets changed periodically, run:
Python

fs = project.feature_sets.get("gdp")

new_schema = client.extract_from_source(ingest_source)

if not fs.schema.is_compatible_with(new_schema, compare_data_types=True):

patched_schema = fs.schema.patch_from(new_schema, compare_data_types=True)

new_feature_set = fs.create_new_version(schema=patched_schema, reason="schema changed before ingest")
new_feature_set.ingest(ingest_source)

else:

fs.ingest (ingest_source)

This call materializes the data and stores it in the Feature Store storage.

Note: Feature Store does not allow specification of a feature with the same name but different case. However, during
ingestion we treat feature names case-insensitive. For example, when ingesting into feature set with single feature named
city, the data are ingested correctly regardless of the case of the column name in the provided data source. We correctly
match and ingest into city feature if column in the data source is named for example as CITY, CiTy or city.

Online ingestion

To ingest data into the online Feature Store, run:

Python

76 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

feature_set.ingest_online(row/s)
The row/s is either a single JSON row or an array of JSON strings used to ingest into the online.
Note: Feature set must have a primary key defined in order to ingest and retrieve from the online Feature Store.

This method is not allowed for derived feature sets.

Lazy ingestion

Lazy ingestion is a method which when be used to migrate feature sets from different systems without the need of ingesting
feature sets immediately. In lazy ingestion, the ingestion process starts the first time data from feature sets are retrieved.

Corresponding scheduled task is created when lazy ingest is defined. For more information, please see Obtaining a lazy
ingest task. Only one lazy ingest task can be defined per feature set major version.

When you ingest feature sets directly using feature_set.ingest (source), the ingest task associated with the feature set
will be deleted from the feature store.

To ingest data lazy, run:
Python

fs.ingest_lazy(source)
fs.ingest(source, credentials=credentials)

Note: This method will run ingest on feature set retrieve. See Feature set schedule API for information on how to delete
or edit scheduled task.

7 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Ingest history API

Getting the ingestion history

The following call returns the ingestion history for the feature set:
Python

To create an ingest history containing all ingestions:

history = my_feature_set.ingest_history()
history.list()

To obtain the size of the history:

history.size

To refresh the history to contain the latest ingestions:
history.refresh()

To obtain the first or last ingestion:

first_ingest = history.first
last_ingest = history.last

To obtain a specific ingestion using an ingest id:

specific_ingest = history.get(ingest_id)

To retrieve data for a specific ingestion:

ingest.retrieve()

To get information about the ingestion like who and when did it, call:

first_ingest.ingested_at
first_ingest.ingested_records_count
first_ingest.scope
first_ingest.source
first_ingest.started_by

Note: Data ingested before system version 0.0.36 is not supported for retrieval via this API.

Reverting ingestion

Any specific ingest can be reverted. Reverting creates a new minor version with the data corresponding to the specific
ingest removed.

Python

ingest.revert()

Note: This method is not allowed for derived feature sets.
There are also asynchronous variants of these methods:
Python

ingest.revert_async()

Note: The above method is not allowed for derived feature sets.

78 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Retrieve API

To retrieve the data, first run:

Python

ref = fs.retrieve(start_date_time=None, end_date_time=None)
Parameters explanation:

Python

If start_date_time and end_date_time are empty, all ingested data are fetched. Otherwise, these parameters are used
to retrieve only a specific range of ingested data. For example, when ingested data are in a time range between ‘T1

This call returns immediately with a retrieve holder allowing you to use multiple approaches on how to retrieve the data.
Based on the input parameters, the specific call for data retrieval searches the cache and tries to find the ingested data.

Note: When utilizing Snowflake as the backend storage for your data, it’s important to understand how nested features are
stored and retrieved. This note provides insights into the storage and retrieval process, differentiating between Snowflake
and Delta Lake storage.

Nested features are stored as VARIANT data type. For example, in a column named ‘Person,” a nested feature might be
stored as follows:

{ "Age": 5’ "Name" : IIJOhnll}
Retrieval in Spark or Parquet File

e When a user retrieves data stored in Snowflake as a backend using Spark or as a Parquet file, the structure is retained.
e In the retrieved data, the nested feature appears as a JSON string within the designated column and row.

Understanding the nuances of how Snowflake and Delta Lake handle nested features is crucial for seamless data storage,
retrieval, and compatibility with different data processing tools. Whether it’s the JSON format in Snowflake or the
hierarchical column structure in Delta Lake, this information ensures efficient utilization of your chosen backend storage
solution.

Downloading the files from Feature Store

You can download the data to your local machine by:

Blocking approach:

Python

dir = ref.download()

Non-Blocking approach:

Python

future = ref.download_async()

Note: More information about asynchronous methods is available at Asynchronous methods.

This will download all produced data files (parquet) into a newly created directory.

Obtaining data as a Spark Frame
You can also read the data from the retrieve call directly as a Spark frame:
Python

ref = my_feature_set.retrieve()
data_frame = ref.as_spark_frame(spark_session)

Read more about Spark Dependencies in the Spark dependencies section.

79 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Retrieving from online

To retrieve data from the online Feature Store, run:
Python

json = feature_set.retrieve_online(key)

The key represents a specific primary key value for which the entry is obtained.

80 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Jobs API

Listing jobs

The List Jobs API returns your currently initiated jobs. By default, only active jobs, which means the jobs that are
currently executing, are returned.

Python

You can provide an additional argument active=False to return all jobs. You can also retrieve a specific type of job by
specifying the job_type parameter.

from featurestore.core.job_types import INGEST, RETRIEVE, EXTRACT_SCHEMA, REVERT_INGEST, MATERIALIZATION_ONLI
client.jobs.1list()
client.jobs.list(active=False, job_type=INGEST)

Note: The active parameter indicates that the job is currently executing.

Getting a job
Python
job = client.jobs.get("job_id")

Cancelling a job

To request cancel without waiting for cancellation to complete you need to call
Python

job.cancel()

To request cancel and wait for cancellation to complete you need to call
Python

job.cancel(wait_for_completion=True)

Checking job status
Python
job.is_done()

Checking if job is cancelled
Python

job.is_cancelled()

Getting job results
Python

job.get_result()

Checking job metrics
Python

job.get_metrics()

81 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

How to download using RetrieveJob
Python

Unlike other job types, RetrieveJob also has a download method which gives you the option to download retrieved data
created by the backend job.

You can also make use of the download_async method that downloads the files asynchronously. More information about
asynchronous methods is at Asynchronous methods.

retrieve_job = client.jobs.get("job_id")
data_path = retrieve_job.download()

Job metadata

Field Name User Modifiable Values

id No -

jobType No Ingest, Retrieve, ExtractSchema, Revert, MaterializationOnline,
ComputeStatistics, ComputeRecommendationClassifiers, CreateMLDataset,
Backfill

done No true, false

cancelled No true, false

childJoblds No Child job ids

Note: The done parameter indicates that the job has completed its execution and the results are available.

82 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Create new feature set version API

A feature set is a collection of features. Users can create a new version of an existing feature set for various reasons.

When to create a new version of a feature set
A new major version of a feature set can be created for various reasons, for example:

o If the schema of a feature set has changed, such as, changing the data type of one or more features, adding one or
more features, deleting one or more features or modifying a special data field in one or more features

e A new version of a feature set may need to be derived from another feature set.

e If there is a change in how a feature is calculated by an external tool, which refers to an affected feature in the
Feature Store The API is capable of specifying a list of affected features, which will lead to an increment in the
version number of those affected features.

o Changing partition columns, primary keys or whether time travel columns is used as partition column

o User wants to create a new version of feature set by back-filling with data from other feature set version

What happens after creating a new version

e The feature set’s major version number is incremented.

e For all the affected features, the version number is incremented.

e The version number is incremented for all features whose type has been changed because the schema has been
provided.

e Appropriate messaging is updated on the feature set and features describing the new version.

e If a new version of the feature set is derived, an automatic ingestion job will be triggered.

How to create a new version

The following command is used to create a new version of a feature set.
Python

feature_set.create_new_version(...)

The following examples show how new version can be created:

e Create a new version on a schema change

« Create a new version by specifying affected features

o Create a new version by specifying affected features and schema
e Create a new version with backfilling

Create a new version on a schema change
Python

fs = project.feature_sets.get("abc")

Get current schema
schema = fs.schema.get()

Change datatype

from featurestore.core.data_types import STRING
schema["xyz"] .data_type = STRING

Change special flag

schema["xyz"] .sensitive = True

Create new version
new_fs = fs.create_new_version(schema=schema, reason="some message", primary_key=[])
e schema is the new schema of the feature set. Refer to Schema API for information on how to create the schema.

e reason (optional) is your provided message describing the changes to the feature set. This message will be applied
to the feature set and the affected features. By default, an auto-generated message will be populated describing the
features added/removed /modified.

83 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

e primary_key (optional) if not empty, new primary key is set on the feature set
e partition_by (optional) if not empty new partition columns are set on the feature set

e time_travel column_as_partition (optional) if true, time travel column is used as partition in the new feature
set version

e backfill_options (optional) If specified, feature store will back-fill data from older feature set version based on
the configuration passed in this object

e time_travel_column (optional) if not empty new time travel column is set on the feature set
e time_travel_column_format (optional) if not empty new time travel column format is set on the feature set

Note: In case primary key or partition by arguments contain same feature multiple times, only distinct values are used.

Create a new version by specifying affected features
Python
fs = project.feature_sets.get("abc")

Create new data source
new_source = CSVFile("new file source")

Create new version
new_fs = fs.create_new_version(affected_features=["xyz"], reason="Computation of feature XYZ changed")

o affected_features is a list of feature names for which you are explicitly asking to increment the version number.

e reason (optional) is your provided message describing the changes to the feature set. This message will be applied
to the feature set and the affected features. By default, an auto-generated message will be populated describing the
features added/removed/modified.

Create a new version by specifying affected features and schema

A new schema will define a new feature set version. For features marked as affected and included in the old feature set
version and in the new version, the version number will be incremented as in Option 2: Create a new version by specifying
affected features.

Create a new version with backfilling

In H20 Feature Store, backfilling involves creating a new version of a feature set that includes data from a previous version,
along with any necessary transformations such as feature mapping or filtering based on a time range.

User scenario:

You have a previous version (version 1.5) of a feature set that contains data from the past 5 years, and you want to create
a new version (version 2.0) that only includes data from the past 2 years. To accomplish this, you need to use backfilling.
You must specify the version (version 1.5) from which you want to use the data. Then you apply a time range filter on a
“time travel” column in the feature set to select the data from the past 2 years. Once the filter is applied, the H20 Feature
Store will create a new version of the feature set (version 2.0) that includes only the selected data.

Python

fs = project.feature_sets.get("abc")

Get current schema
schema = fs.schema.get()

Change datatype

from featurestore.core.data_types import STRING
schema["xyz"] .data_type = STRING

Change special flag

schema["xyz"] .sensitive = True

84 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Create new version with backfilling
backfill = BackfillOption(from_version="", from_date = None, to_date = None, spark_pipeline=None, feature_maf
new_fs = fs.create_new_version(schema=schema, reason="some message", backfill_options=backfill)

e from_version is the version from which backfill will be executed. If the argument refers to just major version,
e.g. “1”, then the corresponding latest minor version will be used.

e from_date is date from which data will be filter out
e to_date is date to which data will be filter out

e spark_pipeline is transformation that will be applied to data. Refer to Supported derived transformation for
information on how to use transformation

o feature_mapping is default value mapping for feature
Example:
Python

import datetime

import featurestore.core.transformations as t

spark_pipeline_transformation = t.SparkPipeline("/path_to_pipeline/spark_pipeline.zip")

backfill = BackfillOption(from_version="1.1", from_date = datetime.datetime(2021, 2, 24, 00, 00), to_date = d
new_fs = fs.create_new_version(schema=schema, reason="some message", backfill_options=backfill)

Note: Spark pipeline transformation is triggered after applying all options: from_date, to_date, feature_mapping.

85 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Asynchronous methods

Python

Several methods in the Feature Store Client API have asynchronous variants (methods ending with _async).
For example, calling retrieve in an asynchronous way:

job = fs.retrieve_async(start_date_time=None, end_date_time=None)

This method returns a job. The job has 2 methods:

e is_done
e get_result

The method is_done returns true if the job has finished, false otherwise. The method get_result obtains the results of
the job. If the method is called before the job has finished, an exception is thrown.

86 © 2024 H20O.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Spark dependencies

If you want to interact with Feature Store from a Spark session, several dependencies need to be added on the Spark
Classpath. Supported Spark versions are 3.5.x.

Using S3 as the Feature Store storage:

e io.delta:delta-spark_2.12:3.0.0
e org.apache.hadoop:hadoop-aws:${HADOOP_VERSION}

Note: HADOOP_VERSION is the hadoop version your Spark is built for.

Version of delta-spark library needs to match your Spark version. Version 3.0.0 can be used by Spark 3.5.

Using Azure Gen2 as the Feature Store storage:

e io.delta:delta-spark_2.12:3.0.0
o featurestore-spark-dependencies. jar
e org.apache.hadoop:hadoop-azure:${HADOOP_VERSION}

Note: HADOOP_VERSION is the hadoop version your Spark is built for.
Version of delta-spark library needs to match your Spark version. Version 3.0.0 can be used by Spark 3.5.

The Spark dependencies jar can be downloaded from the Downloads page.

Using Snowflake as the Feature Store storage:
e net.snowflake:spark-snowflake_${SCALA_VERSION}:2.12.0-spark_3.4
Note: SCALA_VERSION is the scala version used.

Version of spark-snowflake library needs to match your Spark version. Version 2.12.0-spark_3.4 can be used by Spark
3.4.

General configuration
Spark needs to be started with the following configuration to ensure that the time travel queries are correct:

e spark.sql.session.timeZone=UTC
e spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension
e spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog

In case of running Databricks 11.3 and higher, following options need to be set as well:
e databricks.loki.fileSystemCache.enabled=false

If you do not have Apache Spark started, please start it first.

87 © 2024 H20.ai, Inc. All rights reserved.

https://spark.apache.org/docs/latest/sql-getting-started.html

H20 Feature Store Version v2.1.0

Recommendation API

A Recommendation API can be used to suggest personalized recommendations based on the data stored in the feature
sets. If you have two different feature sets, you can use a Recommendation API to find similarities between the features in
those sets and recommend features that are similar in nature or data type.

A classifier can be considered as pattern recognition. Classifiers are used for recommending features based on pattern
matching amongst different feature sets. For example, assume you specify a pattern for one feature set. If the same pattern
appears in another feature set, the feature store will automatically recognize the pattern in the second feature set and
recommend it to the user.

Feature store supports three types of classifiers:
« Empty classifier - this classifier can only be assigned to the feature manually

e Regex classifier - this classifier will be assigned to the feature after ingestion if the feature values match the
configured regex. Regex classifier is typically used for numerical features.

e Sample classifier - this classifier will be assigned to the feature after ingestion if the feature values match the
configured sample data. Sample classifier is used for text-based features.

Note: Classifiers can be defined only by the admins, and it applies to the entire feature store.

When multiple feature sets contain the same classifier, the Recommendation API generates a list of these feature sets.
This list then can be used for joining feature sets that have common classifiers.

Creating a regex classifier

Regex classifiers are used to check if the value of the feature matches the regular expression provided by the classifier
specification.

Python

from featurestore import RegexClassifier

Create a regex classifier for a feature "zipcode" if 907 of incoming data match a pattern of 5 digits.
client.classifiers.create(RegexClassifier("zipcode", "~“\d{5}$", percentage_match=90))

e zipcode is the name of the classifier

e ~\d{5}$ is the classifier pattern that begins and ends with 5 digits

e percentage_match=90 indicates at least 90% of the numbers should be 5 digits. percentage_match defines the
minimum percentage of data that should match the pattern.

To check the output, run the following code, which will list all the classifiers you have created.
client.classifiers.list()

Output:

[

RegexClassifier (name=zipcode, regex="\d{5}$, percentage_match=90)

Creating a sample classifier

Sample classifiers partition an existing dataset to obtain a sample and find the closest pattern match on the new dataset.

Python

from featurestore import SampleClassifier

Parameters included: Sampling fraction, Fuzzy distance and the minimum percentage that the data must match
client.classifiers.create(SampleClassifier.from_feature_set(feature_set = fs, name = "countyname_classifier",

e feature_set is the feature set that you want to apply

e name is the name of the classifier

e column_name is the name of the column on which you create the classifier. You have to specify which text column
you want to match.

88 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

e sample_fraction specifies the fraction percentage of sample data that should be taken from the above column as
opposed to taking the whole set of data. For example, the value specified above (0.50) indicates that only 50% of the
sample data should be used from the above column.

e fuzzy_distance means if you change one character, it should still match the pattern. For example, let’s say you
have AZ for Arizona, and if there’s TZ somewhere, it will be treated as AZ because only one character is changed

e percentage_match indicates that you want to match about 85% of the sample fraction

Creating an empty classifier
An empty classifier is used to manually apply a pattern to a feature.
Python

create an empty classifier
client.classifiers.create("classifierName")

To check the output, run the following code, which will list all the classifiers you have created.
client.classifiers.list()

Output:

[

EmptyClassifier(name=classifierName)

Changing a classifier manually

By using this method, you can annotate a feature with a specific classifier directly. The main advantage of classifiers is
that they are assigned automatically, but users can also do this manually.

Python

fs = project.feature_sets.get("name")

feature = fs.features["feature"]
client.classifiers.list() # lists all classifiers
feature.classifiers = {"ssn"}

Updating an existing classifier
An administrator of the Feature Store can update the classifiers:
Python

from featurestore import RegexClassifier, SampleClassifier

create an empty classifier
client.classifiers.create("classifierName")

update empty classifiers to regex classifier which will be applied if 10% of data match "test\d+" regex
client.classifiers.update (RegexClassifier("classifierName", "test\d+", 10))

Note: No update will be executed on the features. All automatically applied classifiers won’t be changed until a new
ingestion.
Deleting an existing classifier

An administrator of the Feature Store can delete the classifiers:
Python

from featurestore import RegexClassifier, SampleClassifier

create empty classifier
client.classifiers.create("classifierName")

89 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

delete classifier
client.classifiers.delete("classifierName")

Note: No classifiers will be deleted from the features. To delete a classifier from a feature, you need to do so manually.

90 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Feature set schedule API

You can schedule an ingestion job from Feature Store by using API available on the feature sets.

Schedule a new task

To create new scheduled task, you first need to obtain the feature set.

Python

fs.schedule_ingest("task_name", source, schedule = "0 2 * x x", description = "", credentials = None, allowec
schedule argument is in cron format (e.g., 0 2 * * * will execute task every day at 2 am).

allowed_failures argument determines how many times the task can fail till a next failure will deschedule the task in
order to save resources. A negative number has the meaning that any number of failures is allowed. Default value is 2.

Note: Scheduling ingestion task is allowed from all data sources except Spark dataframe. Data source used for scheduling
must be stored in permanent accessible locations, which is not true for Spark Dataframes as they live in memory of some
Spark session.

To list scheduled tasks
List methods do not return tasks directly. Instead, it returns an iterator which obtains the tasks sets lazily.
Python

fs.schedule.tasks()

Obtaining a task
Python

task = fs.schedule.get("task_id")

Examining task executions

Basic information about the task executions can be obtained by asking for executions history. It will provide the start/end
times of scheduled task runs and a final (job) status. A special status ‘Created’ is delivered in case the scheduled task
started, but not yet finished. An accompanied job id information can be utilized to get access to a job that fulfilled the
execution in the past.

Python

for execution_record in task.execution_history():
print(execution_record)

Obtaining a lazy ingest task

The lazy ingest task allows you to schedule the ingestion of the data for a feature set to a later time, rather than ingesting
the data immediately. Each major version of a feature set can contain only one lazy ingest task. To obtain it, run:

Python

task = fs.schedule.get_lazy_ingest_task()

Deleting task
Python

task = fs.schedule.get("task_id")
task.delete()

91 © 2024 H20.ai, Inc. All rights reserved.

https://en.wikipedia.org/wiki/Cron#Overview

H20 Feature Store Version v2.1.0

Updating task fields
To update the field, simply call the setter of that field, for example:
Python

task = fs.schedule.get("task_id")
task.description = "new description"
task.schedule = "0 6 * * x"

Controlling task liveness

In case a task was scheduled with some defined limit on failures and the failures actually occurred then the task gets
automatically paused by Feature Store in order to save resources. To check whether the task was paused or not use
following call:

Python

task = fs.schedule.get("task_id")
task.is_paused()

A task can be paused even manually if a user decides so.
Python
task.pause()

A paused task can be rescheduled again by calling a resume () method. The resume method can take an optional argument
that enables to set a new limit on allowed failures. If the value isn’t provided then existing limit stays without change.

Python

task.resume(allowed_failures = None)

To check a current limit on allowed failures see
Python

task.allowed_failures

Starting lazy ingest task

If lazy ingest task exist on feature set it will be run automatically on first retrieve. The user has the option to run it:
Python

fs.schedule.start_lazy_ingest_task()

Note: In case some ingest was executed on feature set version, lazy ingest task will not run.

Timezone configuration for task
By default, Feature Store clients pick the system timezone. It is possible to change the timezone such as:
Python

import os, time
os.environ['TZ'] = 'UTC-05:00'

Note: Supported timezone format is UTC-XX:XX, UTC+XX:XX or timezones supported by Python.

92 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Feature set review API

The feature set review process involves the reviewer’s acceptance. Depending on the system configuration, all feature sets
or only sensitive ones may be subject to review.

Manage review requests from other users

Reviewer is a user who can approve or reject feature sets.

List of all pending feature set reviews requests from users

Python

reviews = client.feature_set_reviews.manageable_requests(filters)

The filters argument is optional and specifies which review status(es) you are interested in. By default, it is empty.
To provide filter to your requests, please create it as:

Python

from featurestore.core.review_statuses IN_PROGRESS, APPROVED, REJECTED
filters = [IN_PROGRESS, REJECTED]

List of pending feature set reviews requests related to project
Similarly, you can list the pending feature set reviews on a project basis.

Python

project = client.projects.get("project_name")
reviews = project.feature_set_reviews.manageable_requests(filters)

Approve a feature set review request from the user
Python

review_request.approve("it will be fun")

Reject a feature set review request from the user
Python

review_request.reject("it's not ready yet")

Get a feature set to review
To get feature set in review, please call:
Python

review_request.get_feature_set ()

Preview the data of feature set to review
To preview data ingested to feature set related to review, simply call method:
Python

review_request.get_preview()

Manage own feature sets in review

User can see own review requests.

93 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

List all feature sets review requests in review

Python

reviews = client.feature_set_reviews.my_requests(filters)

The filters argument is optional and specifies which review status(es) you are interested in. By default, it is empty.
To verify the status of your request, specify using the corresponding filters. For example:

Python

from featurestore.core.review_statuses IN_PROGRESS, APPROVED, REJECTED
filters = [IN_PROGRESS, REJECTED]

List feature sets review requests in review related to project
Similarly, you can list your own review requests that are related to a project.

Python

project = client.projects.get("project_name")
reviews = project.feature_set_reviews.my_requests(filters)

Get a feature set in review
To get feature set with features related to the review, simply call method:
Python

review.get_feature_set()

Preview the data of feature set in review

To preview data on feature set in review, please call:
Python

review.get_preview()

Delete feature set version in in review
To delete feature set major version which is in review and is in status IN_ PROGRESS or REJECTED, please call:
Python

review.delete()

94 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Dashboard API

Dashboard provides a short summary about the usage of Feature store.

Recently used projects

To get overview about recently used projects, to list their names, descriptions, access times and optionally to get access to
a project itself, use following methods:

Python

recently_used_projects = client.dashboard.get_recently_used_projects()
recently_used_project = recently_used_projects[0]
recently_used_project.name

recently_used_project.description

recently_used_project.updated_at

recently_used_project.last_access_at

project = recently_used_project.get_project()

Recently used feature sets

Similarly, to get overview about recently used feature sets, to list their names, descriptions, access times and to get access
to a feature set itself, use following methods:

Python

recently_used_feature_sets = client.dashboard.get_recently_used_feature_sets()
recently_used_feature_set = recently_used_feature_sets[0]
recently_used_feature_set.name

recently_used_feature_set.description

recently_used_feature_set.updated_at

recently_used_feature_set.last_access_at

feature_set = recently_used_feature_set.get_feature_set()

Feature sets popularity

To provide hints about feature sets usage, Feature store tracks how often are individual feature sets retrieved (among all
users) and provides a sorted list of those feature sets. A user can find out a feature set name, description, how many times
was retrieved and its own access rights to that feature set.

Python

feature_sets_popularity = client.dashboard.get_feature_sets_popularity()
popular_feature_set = feature_sets_popularity[0]
popular_feature_set.name

popular_feature_set.description

popular_feature_set.current_permission
popular_feature_set.number_of_retrievals

feature_set = popular_feature_set.get_feature_set()

Making list of favorite feature sets

To simplify navigation across different feature sets, a user can mark a feature set to include it into a list of personal favorite
feature sets. Whenever a feature set gets pinned then its reference is put onto the top of the list (it applies for a feature
set pinned in the past as well). When a feature set is no more of interest it can be unpinned to remove it from the list. To
get the favorite feature sets list, use a method from dashboard API.

Note: The list method does not return feature sets directly. Instead, it returns an iterator which obtains the feature sets
lazily.

Python

fs = project.feature_sets.get("training_ fs")

95 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

adding a feature set to favorite list
fs.pin()

getting the list of favorite feature sets
favorites = client.dashboard.list_pinned_feature_sets()

accessing returned element

favorite = next(favorites)

favorite.name

favorite.description
favorite.updated_at

favorite.pinned_at

favorite_fs = favorite.get_feature_set()

removing a feature set from favorite list
fs.unpin()

96 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

CSV example
Python

from featurestore import Client, CSVFile

Initialise feature store client
client = Client("url")
client.auth.login()

Set project specifics
project = client.projects.create("demo")

Create the csv source
csv = CSVFile("s3a://h2o0-datasets/taxi_small.csv")

csv_schema = client.extract_schema_from_source(csv)

Register the feature set

Version v2.1.0

my_feature_set = project.feature_sets.register(csv_schema, "feature_set_name",

primary_key=["key_name"])

Ingest to cache
my_feature_set.ingest(csv)

Retrieve feature set

ref = my_feature_set.retrieve()
ref.download()

97

© 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

CSYV folder example

Example 1: directory structure

e bucket root
o nested_folder/
o 2021-05-03/ -> Date Partition
e training data/ -> Sub Folder
e data.csv
o 2021-05-04/ -> Date Partition
o training sample/ -> Sub Folder
e data.csv

Python

from featurestore import Client, CSVFolder

Initialise feature store client
client = Client("ip:port")
client.auth.login()

Set project specifics
project = client.projects.create("demo")

Create the csv folder source

csv_folder = CSVFolder(
root_folder="s3a://feature-store-test-data/nested_folder",
filter_pattern=".*/training.*"

)

csv_folder_schema = client.extract_schema_from_source(csv_folder)

Register the feature set

Version v2.1.0

my_feature_set = project.feature_sets.register(csv_folder_schema, "feature_set_name",

primary_key=["key_name"])

Ingest to cache
my_feature_set.ingest(csv_folder)

Retrieve feature set
ref = my_feature_set.retrieve()
ref.download()

Example 2: directory structure

e bucket_root
o mnested_folder/
« California
e 2021-05-03/ -> Date Partition
e training data/ -> Sub Folder
o date.csv
e Arizona
e 2021-05-04/ -> Date Partition
o training sample/ -> Sub Folder
e data.csv
e Texas
e 2021-05-04/ -> Date Partition
o training sample/ -> Sub Folder
e data.csv

Python

98

© 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

from featurestore import Client, CSVFolder

Initialise feature store client
client = Client("ip:port")
client.auth.login()

Set project specifics
project = client.projects.create("demo")

Create the csv folder source

csv_folder_source = CSVFolder(

root_folder="s3a://feature-store-test-data/nested_folder",

filter_pattern=".*/.*/training.*" # To ingest from all states

)

csv_folder_schema = client.extract_schema_from_source(csv_folder_source)

Note

To ingest only from California, then filter_pattern = "California/.*/training.*"

To ingest only from California & Arizona, then filter_pattern = "(Arizona|California)/.*/training.x*"

Register the feature set
my_feature_set = project.feature_sets.register(csv_folder_schema, "feature_set_name",
primary_key=["key_name"])

Ingest to cache
my_feature_set.ingest()

Retrieve feature set
ref = my_feature_set.retrieve()
ref.download()

Example 3: directory structure (no date folder)

e bucket root
 nested_ folder/
¢ California
o training data/ -> Sub Folder
e data.csv
e Arizona
e training sample/ -> Sub Folder
e data.csv
o Texas
e training sample/ -> Sub Folder
e data.csv

Python

from featurestore import Client, CSVFolder

Initialise feature store client
client = Client("ip:port")
client.auth.login()

Set project specifics
project = client.projects.create("demo")

Create the csv folder source

csv_folder_source = CSVFolder(
root_folder="s3a://feature-store-test-data/nested_folder",
filter_pattern=".*/training.*" # To ingest from all states

)

99 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

csv_folder_schema = client.extract_schema_from_source(csv_folder_source)

Note
To ingest only from California, then filter_pattern = "California/training.*"
To ingest only from California & Arizona, then filter_pattern = "(Arizona|California)/training.x*"

Register the feature set
my_feature_set = project.feature_sets.register(csv_folder_schema, "feature_set_name",
primary_key=["key_name"])

Ingest to cache
my_feature_set.ingest ()

Retrieve feature set

ref = my_feature_set.retrieve()
ref.download ()

100 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Driverless AT MOJO example

Python

from featurestore import Client, CSVFile, DriverlessAIMOJO
from featurestore.core.job_types import INGEST

Initialise feature store client
client = Client("ip:port")
client.auth.login()

Set project specifics
project = client.projects.create("demo")

Create a DAI mojo pipeline source

csv = CSVFile("")

csv_schema = client.extract_schema_from_source(csv)

input_fs = project.feature_sets.register(csv_schema, "input")
input_fs.ingest(csv)

mojo_pipeline = DriverlessAIMOJO("")
mojo_pipeline_schema = client.extract_derived_schema([input_fs], mojo_pipeline)

Register the feature set
my_feature_set = project.feature_sets.register(mojo_pipeline_schema, "feature_set_name",
primary_key=["key_name"])

Get ingest job
auto_ingest_job = my_feature_set.get_active_jobs (INGEST) [0]
auto_ingest_job.wait_for_result()

Retrieve feature set

ref = my_feature_set.retrieve()
ref.download()

101 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Delta table example

Python
from featurestore import Client, DeltaTable
Initialise feature store client

client = Client("ip:port")
fclient.auth.login()

Set project specifics
project = client.projects.create("demo")

Create the delta table source
delta = DeltaTable("")
delta_schema = client.extract_schema_from_source(delta)

Register the feature set
my_feature_set = project.feature_sets.register(delta_schema, "feature_set_name", primary_key=["key_name"])

Ingest to cache
my_feature_set.ingest(delta)

Retrieve feature set
ref = my_feature_set.retrieve()
ref.download()

How to apply a filter on Delta table
Python

from featurestore import DeltaTable, DeltaTableFilter
delta_table_filter = DeltaTableFilter(column=..., operator=..., value=...)
delta_source = DeltaTable(path=..., filter=delta_table_filter)

102 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

JDBC example

Python
from featurestore import Client, JdbcTable
Initialise feature store client

client = Client("ip:port")
client.auth.login()

Set project specifics
project = client.projects.create("demo")

Create the jdbc source
jdbc_source = JdbcTable("", "")

jdbc_source_schema = client.extract_schema_from_source(jdbc_source)

Register the feature set

Version v2.1.0

my_feature_set = project.feature_sets.register(jdbc_source_schema, "feature_set_name",

primary_key=["key_name"])

Ingest to cache
my_feature_set.ingest(jdbc_source)

Retrieve feature set
ref = my_feature_set.retrieve()
ref.download()

103

© 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Joined feature sets example

Python

from featurestore import *
from featurestore.core.job_types import INGEST
import featurestore.core.transformations as t

Initialise feature store client
client = Client("ip:port")
client.auth.login()

Set project specifics
project = client.projects.create("demo")

Create first feature set

csv = CSVFile("")

csv_schema = client.extract_schema_from_source(csv)

fs_1 = project.feature_sets.register(csv_schema, "feature_set_1", primary_key=["key"])
fs_1.ingest(csv)

Create second feature set

snowflake_table = SnowflakeTable("", "warehouse name", "database name", "schema name", "table name")
snowflake_table_schema = client.extract_schema_from_source(snowflake_table)

fs_2 = project.feature_sets.register(snowflake_table_schema, "feature_set_2", primary_key=["key"])
fs_2.ingest(snowflake_table)

Create joined feature set transformation

join_transformation = JoinFeatureSets(left_key = "key", right_key = "key")
input_schema = client.extract_derived_schema([fs_1, fs_2], join_transformation)
joined_fs = project.feature_sets.register(input_schema, "joined_feature_set")

Get ingest job
val auto_ingest_job = joined_fs.get_active_jobs(INGEST) [0]
auto_ingest_job.wait_for_result()

Retrieve feature set

ref = joined_fs.retrieve()
ref.download ()

104 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

JSON example

Python

from featurestore import Client, JSONFile

Initialise feature store client
client = Client("url")
client.auth.login()

Set project specifics
project = client.projects.create("demo")

Create the json source

json =

JSONFile("wasbs://data@featurestoretesting.blob.core.windows.net/weather. json", multiline=True)
json_schema = client.extract_schema_from_source(json)

Register the feature set
my_feature_set = project.feature_sets.register(json_schema,
"feature_set_name", primary_key=["key_name"])

Ingest to cache
my_feature_set.ingest(json)

Retrieve feature set

ref = my_feature_set.retrieve()
ref.download ()

105 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

JSON folder example

Example directory structure

e bucket root
o nested_folder/
o 2021-05-03/ -> Date Partition
e training data/ -> Sub Folder
o data.json
o 2021-05-04/ -> Date Partition
o training sample/ -> Sub Folder
o data.json

Python
from featurestore import Client, JSONFolder
Initialise feature store client

client = Client("ip:port")
client.auth.login()

Set project specifics
project = client.projects.create("demo")

Create the JSON folder source
json_folder = JSONFolder(

root_folder="s3a://feature-store-test-data/nested_folder",

filter_pattern=".*/training.*"

)

json_folder_schema = client.extract_schema_from_source(json_folder)

Register the feature set

my_feature_set = project.feature_sets.register(json_folder_schema,
"feature_set_name", primary_key=["key_name"])

Ingest to cache
my_feature_set.ingest(json_folder)

Retrieve feature set
ref = my_feature_set.retrieve()
ref.download()

106

Version v2.1.0

© 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

MongoDb example

Python

from featurestore import Client, MongoDbCollection

Initialise feature store client
client = Client("ip:port")
client.auth.login()

Set project specifics
project = client.projects.create("demo")

Create the jdbc source

Version v2.1.0

mongo_db_source = MongoDbCollection("mongodb+srv://some_cluster.mongodb.net/test",

database="sample_guides", collection="planets")
schema = client.extract_schema_from_source(mongo_db_source)

Register the feature set

my_feature_set = project.feature_sets.register(schema, "feature_set_name",

primary_key="_id")

Quick look on the data
my_feature_set.get_preview()

107

© 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Parquet example

Python

from featurestore import Client, ParquetFile

Initialise feature store client
client = Client("ip:port")
client.auth.login()

Set project specifics
project = client.projects.create("demo")

Create the parquet source
parquet = ParquetFile("")
parquet_schema = client.extract_schema_from_source(parquet)

Register the feature set
my_feature_set = project.feature_sets.register(parquet_schema, "feature_set_name",
primary_key=["key_name"])

Ingest to cache
my_feature_set.ingest(parquet)

Retrieve feature set

ref = my_feature_set.retrieve()
ref.download()

108 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

Parquet folder example

Example directory structure

e bucket root
o nested_folder/
o 2021-05-03/ -> Date Partition
e training data/ -> Sub Folder
e data.csv
o 2021-05-04/ -> Date Partition
o training sample/ -> Sub Folder
e data.csv

Python
from featurestore import Client, ParquetFolder
Initialise feature store client

client = Client("ip:port")
client.auth.login()

Set project specifics
project = client.projects.create("demo")

Create the parquet folder source
parquet_folder = ParquetFolder (

root_folder="s3a://feature-store-test-data/nested_folder",

filter_pattern=".*/training.*"

)

Version v2.1.0

parquet_folder_schema = client.extract_schema_from_source(parquet_folder)

Register the feature set

my_feature_set = project.feature_sets.register(parquet_folder_schema, "feature_set_name",

primary_key=["key_name"])

Ingest to cache
my_feature_set.ingest(parquet_folder)

Retrieve feature set
ref = my_feature_set.retrieve()
ref.download()

109

© 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

Snowflake example

Python

from featurestore import Client, SnowflakeTable

Initialise feature store client
client = Client("ip:port")
client.auth.login()

Set project specifics
project = client.projects.create("demo")

Create a snowflake table source

proxy = Proxy("url", "port", "username", "password")

snowflake_table = SnowflakeTable("", "warehouse name",

Version v2.1.0

"database name", "schema name",

"table name", insecure=False, proxy=proxy, role="role", account="account name")
snowflake_table_schema = client.extract_schema_from_source(snowflake_table)

Create a snowflake query source

snowflake_query = SnowflakeTable("", "warehouse name", "database name", "schema name",

query=u n)

snowflake_query_schema = client.extract_schema_from_source(snowflake_query)

Register the feature set

my_feature_set_1 = project.feature_sets.register(snowflake_table_schema, "feature_set_1",

primary_key=["key_name"])

my_feature_set_2 = project.feature_sets.register(snowflake_query_schema, "feature_set_2",

primary_key=["key_name"])

Ingest to cache
my_feature_set_1.ingest(snowflake_table)
my_feature_set_2.ingest(snowflake_query)

Retrieve feature set

ref = my_feature_set_1.retrieve()
ref.download()

ref = my_feature_set_2.retrieve()
ref.download()

110

© 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Spark pipeline example

Python

from featurestore import Client, CSVFile, SparkPipeline
from featurestore.core.job_types import INGEST

Initialise feature store client
client = Client("ip:port")
client.auth.login()

Set project specifics
project = client.projects.create("demo")

Create source for input feature set

csv = CSVFile("wasbs://featurestore@featurestorekuba.blob.core.windows.net/training.csv")
Extract schema

schema = client.extract_schema_from_source(csv)

Register input feature set

input_fs = project.feature_sets.register(schema, "input")

Ingest the input feature set

input_fs.ingest(csv)

Define Spark pipeline transformation

spark_pipeline = SparkPipeline("pipeline_path")

Extract schema

schema = client.extract_derived_schema([input_fs], spark_pipeline)

Register the feature set

my_feature_set = project.feature_sets.register(schema, "feature_set_name",
primary_key=["state"])

Get ingest job
val auto_ingest_job = my_feature_set.get_active_jobs(INGEST) [0]
auto_ingest_job.wait_for_result()

Retrieve feature set

ref = my_feature_set.retrieve()
ref.download ()

111 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

Admin Transfer Ownership Example

Python

from featurestore import Client
from featurestore.core.access_type import AccessType
from grpc import RpcError

Initialise feature store client using a user that has admin access
client = Client("ip:port")
client.auth.login()

01d and new email to transfer the user's projects
old_email = "old@example.com"
new_email = "newQexample.com"

Find all the projects the user is the owner of.
owner_projects = list(client.projects.admin.list(user_email=old_email,
required_permission=AccessType.OWNER))

Remove the old owner and add the new owner.
for project in owner_projects:

try:

project.add_owners([new_email])

except RpcError as error:

if "is already 'OWNER'" in error.details():
print (f"{new_emaill} is already OWNER")
project.remove_owners([old_email])

Version v2.1.0

print (f"Transferred ownership from {old_email} to {new_email} for project {project.namel}")

112 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Supported data sources

Data must first be ingested into Feature Store before it can be used. Ingesting is the act of uploading data into Feature
Store.

Feature Store supports reading data from the following protocols:
o s3 (internally reusing s3a client)
e s3a
o wasbs (encrypted) and wasb (legacy)
« abfss (encrypted) and abfs (legacy)
o http/https (data gets uploaded to internal storage)
o drive (to read files from H20 Drive)
e gs to read files from Google Cloud Storage

Note: Due to technical limitations of underlying libraries, reading from Google Cloud Storage isn’t supported when
FeatureStore is configured to utilize Google Cloud offline storage.

CSVv

CSV file format. Supported path locations are S3 bucket, Azure Blob Storage, HTTP/HTTPS URL and H20 Drive.
User API:

Python

Parameters:

e path: String - path to csv file
e delimiter: String - values delimiter

source = CSVFile(path=..., delimiter=...)

CSV folder
CSV Folder source. Supported path locations are S3 bucket and Azure Blob Storage.
User API:
Python
Parameters:
e root_folder: String - path to the root folder
e delimiter: String - values delimiter

o filter_pattern: String - Pattern to locate the files. To match the files at depth “N”, the filter pattern must
contain N expressions separated by “/” where each string is either an exact string or a regex pattern.

o For example: filter_pattern="data/.*/.*/.*comp/.*" will match this file “data/1996-03-03/1/1679-
comp/hello.json”.

source = CSVFolder(root_folder=..., delimiter=..., filter_pattern=...)

Parquet

Parquet file format. Supported path locations are S3 bucket, Azure Blob Storage, HTTP/HTTPS URL and H20 Drive.
User API:

Python

Parameters:

e path: String - path to parquet file

113 © 2024 H20.ai, Inc. All rights reserved.

https://hadoop.apache.org/docs/stable/hadoop-aws/tools/hadoop-aws/index.html#Introducing_the_Hadoop_S3A_client.
https://learn.microsoft.com/en-us/azure/databricks/external-data/wasb-blob
https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-abfs-driver

H20 Feature Store Version v2.1.0

source = ParquetFile(path=...)

Parquet folder
Parquet folder source. Supported path locations are S3 bucket and Azure Blob Storage.
User API:
Python
Parameters:
e root_folder: String - path to the root folder

o filter_pattern: String - Pattern to locate the files. To match the files at depth “N”, the filter pattern must
contain N expressions separated by “/” where each string is either an exact string or a regex pattern.

o For example: filter_pattern="data/.*/.*/.*comp/.*" will match this file “data/1996-03-03/1/1679-
comp/hello.json”.

source = ParquetFolder(root_folder=..., filter_pattern=...)

JSON

JSON file format. Supported path locations are S3 bucket, Azure Blob Storage, HTTP/HTTPS URL and H20 Drive.
Different types of JSON formats are supported. Read more here to learn what types of JSON files are supported. By
default multiline is set to False.

User API:
Python
Parameters:

e path: String - path to JSON file
e multiline: Boolean - True whether the input is JSON where one entry is on multiple lines, otherwise False.

source = JSONFile(path=..., multiline=...)

Note: Please keep in mind that a JSON object is an unordered set of name/value pairs. This means that using JSON files
for extracting schema can produce a schema with a different order of features than that used in the file.

JSON folder
JSON folder source. Supported path locations are S3 bucket and Azure Blob Storage.
User API:
Python
Parameters:
e root_folder: String - path to the root folder
e multiline: Boolean - True whether the input is JSON where one entry is on multiple lines, otherwise False.

e filter_pattern: String - Pattern to locate the files. To match the files at depth “N”, the filter pattern must
contain N expressions separated by “/” where each string is either an exact string or a regex pattern.

o For example: filter_pattern="data/.*/.*/.xcomp/.*" will match this file “data/1996-03-03/1/1679-
comp/hello.json”.

source = JSONFolder (root_folder=..., multiline=..., filter_pattern=...)

Note: Please keep in mind that a JSON object is an unordered set of name/value pairs. This means that using JSON files
for extracting schema can produce a schema with a different order of features than that used in the file.

114 © 2024 H20.ai, Inc. All rights reserved.

https://spark.apache.org/docs/latest/sql-data-sources-json.html

H20 Feature Store

MongoDB

Version v2.1.0

Data stored in a MongoDb can be accessed by Feature Store as well. For a MongoDb authentication, environment variables

« MONGODB_USER
e MONGODB_PASSWORD will be used to provide user information.
o User API:

Python

Parameters:

e connection_uri: String - a MongoDb server URI

o E.g. connection_uri=“mongodb+srv://my__cluster.mongodb.net/test”
o database: String - Name of a database on the server

e E.g. database=“sample_guides”

e collection: String - Name of a collection to read the data from

e E.g. collection=“planets”

source = MongoDbCollection(connection_uri=..., database= ..., collection = ...)

Delta table
Delta table format. Table can be stored in either S3 or Azure Blob Storage.
User API:
Python
Parameters:
o path: String - path to delta table
o version: Int - (Optional) - version of the delta table
e timestamp: String - (Optional) - timestamp of the data in the table

o filter: DeltaTableFilter - (Optional) - Filter on the delta table

source = DeltaTable(path=..., version=..., timestamp=..., filter=...

DeltaTableFilter API:
Python
Parameters:

e column: String - name of the column
e operator: String - operator to be applied
e value: String|Double|Boolean - value to be applied on the filter

delta_filter = DeltaTableFilter(column=..., operator=..., value=...

Supported operators

The following are the supported operators : ==, <, >, and .

Valid parameter combinations

Path

Path, Version

Path, Version, Filter
Path, Timestamp

Path, Timestamp, Filter
Path, Filter

A

115

© 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

JDBC
JDBC table format. Currently, we support the following JDBC connections:

e PostgreSQL
o Teradata

User API:

Python

Parameters:
e connection_url: String - connection string including the database name
e table: String - table to fetch data from
e query: String - query to fetch data from

o partition_options: PartitionOptions - (Optional) parameters to enable parallel execution. These are applicable
only when table is specified

e PartitionOptions constitutes : num_partitions, partition_column, lower_bound, upper_bound, fetch_size

source

source = JdbcTable(connection_url=..., query=...)
The format of the connection URL is a standard JDBC connection string, such as:

e For Teradata, jdbc:teradata://host:port/database
o For PostgreSQL, jdbc:postgresql://host:port/database

The database is a mandatory part of the connection string in the case of Feature Store. Note that only one of table or
query is supported at the same time. Additionally, PartitionOptions can only be specified with table. These options
must all be specified if any of them is specified. They describe how to partition the table when reading in parallel from
multiple workers. partitionColumn must be a numeric, date, or timestamp column from the table in question. Notice
that lowerBound and upperBound are just used to decide the partition stride, not for filtering the rows in table. All rows
in the table will be partitioned and returned. This option applies only to reading.

Snowflake table
Extract data from Snowflake tables or queries.
User API:
Python
Parameters:
e table: String - table to fetch data from
e database: String - Snowflake database
e url: String - url to Snowflake instance
e query: String - query to fetch data from
e warehouse: String - Snowflake warehouse
e schema: String - Snowflake schema
e insecure: Boolean - if True, Snowflake will not perform SSL verification
e proxy: Proxy object - proxy specification
e role: String - Snowflake role
e account: String - Snowflake account name

Note: table and query parameters cannot be configured simultaneously.

116 © 2024 H20.ai, Inc. All rights reserved.

JdbcTable(connection_url=..., table=..., partition_options=PartitionOptions(num_partitions = ...

jok:

H20 Feature Store Version v2.1.0

from featurestore import *

proxy = Proxy(host..., port=..., user=..., password=...)
source = SnowflakeTable(table=..., database=..., url=..., query=..., warehouse=..., schema=..., insecure=...
proxy=..., role=..., account=...)

Note: A proxy is an optional argument in the Snowflake data source API. If a proxy is not being used, the proxy
configuration can simply be set to None.

The use of a proxy is possible for users only if the proxy feature is enabled by the administrator of the Snowflake account.
Therefore, it is important to confirm whether proxy support is enabled before attempting to configure a proxy in the
Snowflake data source API.

Snowflake Cursor object
Extract data from Snowflake tables or queries.
User API:
The Snowflake Cursor object is currently only supported in the Python client.
Parameters:
e database: String - Snowflake database
e url: String - url to Snowflake instance
o warehouse: String - Snowflake warehouse
e schema: String - Snowflake schema
e snowflake_cursor: Object - Snowflake cursor
e insecure: Boolean - if True, Snowflake will not perform SSL verification
e proxy: Proxy object - proxy specification
e role: String - Snowflake role

e account: String - Snowflake account name

source = SnowflakeCursor(database=..., url=..., warehouse=..., schema=..., snowflake_cursor=..., insecure=...

proxy=..., role=..., account=...)
Database snippet:

Internally, the Snowflake Cursor is converted to SnowflakeTable with query and is therefore saved in the same format in
the database.

Spark Data Frame

When using Spark Data Frame as the source, several conditions must be met first. Read about the Spark dependencies to
understand these requirements.

User API:
Python
Parameters:
e dataframe: DataFrame - Spark Data Frame instance

source = SparkDataFrame(dataframe...)

Accessing H20 Drive Data

When H20 Drive application is running in the same cloud environment as Feature Store, then user is able to access files
that he/she uploaded into H20 Drive. To refer to those files, let’s specify the scheme as drive. However, due to technical
limitations access to H20 Drive files is currently not possible when user is authenticated to Feature Store via PAT token.

Examples

117 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Python
source_1 = CSVFile("drive://example-file-1.csv")
source_2 = CSVFile("drive://my-subdirectory/example-file-2.csv")

BigQuery (Google Cloud)

FeatureStore can extract data from BigQuery tables or queries.
User API:

Python

Parameters:

e table: String - table to fetch data from

e parent_project: String - (Optional) The Google Cloud Project ID of the table to bill for the export

e query: String - query to perform and read its result from

e materialization_dataset: String- When a query parameter was specified, then a dataset where the materialized
view is going to be created. This dataset should be in same location as the view or the queried tables.

Note: table and query parameters cannot be configured simultaneously.

source = BigQueryTable(table=your_dataset.your_table, parent_project=your_project)

sql="SELECT label, count(1) FROM “your_project.your_dataset.your_table group by label"

source = BigQueryTable(parent_project=your_project, query=sql, materialization_dataset="your_temporal_dataset

An instance of GepCredentials will be utilized to authenticate to Google BigQuery. See info on GepCredentials when a
specific instance is required.

118 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Supported derived transformation

Transformation changes the raw data and makes it usable by a model.

Spark pipeline

Creating a feature set via Spark pipeline. The Spark pipeline generates the data from an existing feature set that you pass
in as an input to the pipeline. Feature Store then uploads the Spark pipeline to the Feature Store artifacts cache and
stores only the location of the pipeline in the database.

User API:
Python
Parameters:

e pipeline_local_location: String or Pipeline Object - you pass the local path to the pipeline or the pipeline
object itself. Once the feature set is registered, this parameter contains the path to the uploaded Spark pipeline in
the Feature Store artifacts storage.

import featurestore.core.transformations as t
spark_pipeline_transformation = t.SparkPipeline("...")

Driverless AI MOJO

Creating a feature set via Driverless ATl MOJO. The MOJO pipeline generates the data from an existing feature set that
you pass in as an input to the pipeline. Feature Store then uploads the MOJO pipeline to the Feature Store artifacts cache
and stores only the location of the pipeline in the database.

Note: Only features created from Driverless Al with the make_mojo_scoring pipeline_for_features_only setting are
supported in Feature Store.

User API:
Python
Parameters:

e mojo_local_location: String - you pass the local path to the pipeline. Once the feature set is registered, this
parameter contains the path to the uploaded MOJO pipeline in the Feature Store artifacts cache

import featurestore.core.transformations as t

transformation = t.DriverlessAIM0JOC(...)

JoinFeatureSets
Creating a new feature set by joining together two different feature sets.
User API:
Python
Parameters:
e left_key: String - joining key which must be present in left feature set
e right_key: String - joining key which must be present in right feature set
e join_type: JoinFeatureSetsType - join type (default: JoinFeatureSetsType.INNER)
JoinFeatureSetsType

e JoinFeatureSetsType.INNER - The inner join is the default join in Spark SQL. It selects rows that have matching
values in both relations.

o JoinFeatureSetsType.LEFT - A left join returns all values from the left relation and the matched values from the
right relation, or appends NULL if there is no match.

e JoinFeatureSetsType.RIGHT - A right join returns all values from the right relation and the matched values from
the left relation, or appends NULL if there is no match.

119 © 2024 H20.ai, Inc. All rights reserved.

https://docs.h2o.ai/driverless-ai/1-10-lts/docs/userguide/config_docs/experiment_config.html#make-mojo-scoring-pipeline-for-features-only

H20 Feature Store Version v2.1.0

¢ JoinFeatureSetsType. FULL - A full join returns all values from both relations, appending NULL values on the side
that does not have a match.
e JoinFeatureSetsType.CROSS - A cross join returns the Cartesian product of two relations.

import featurestore.core.transformations as t

transformation = t.JoinFeatureSets(left_key=..., right_key=..., join_type=...)

Note: During join transformations, Feature Store perform inner joins

120 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Python Sparkling Water

1. In a Python environment, pip install the featurestore client.
2. Download spark and pysparkling by following the instructions from the Sparkling Water documentation.
3. Start the pysparkling session with the Spark dependencies.

./bin/pysparkling --jars <spark dependency jar file>
Example:

from featurestore import Client
ref = fs.retrieve()
data_frame = ref.as_spark_frame(spark)

sparklingwater

from pysparkling import *

hc = H20Context.getOrCreate()

from pysparkling.ml import H20GLM

estimator = H20GLM(labelCol = "RainTomorrow")
model = estimator.fit(data_frame)

121 © 2024 H20.ai, Inc. All rights reserved.

https://docs.h2o.ai/sw/index.html

H20 Feature Store Version v2.1.0

The Feature Store can be integrated with h20GPTe and deployed with h2o0GPTe enabled. Enterprise h2o0GPTe is an
Al-powered search assistant powered by H20 LLM that helps you find answers to questions about your documents,
websites, and workplace content.

For detailed information on how to integrate h20GPTe with the Feature Store, see H20 GPTE Integration.

When you create or update projects and feature sets within the Feature Store, and you have this integration active, it
organizes your data within h20GPTe. It creates a collection for a project or document of a feature set within h20GPTe. It
allows you to interact with your data from the Feature Store through h20GPTe.

122 © 2024 H20.ai, Inc. All rights reserved.

https://docs.h2o.ai/h2ogpte-docs/

H20 Feature Store Version v2.1.0

Key terms

This page houses the keys terms used throughout this documentation.

Classifier

Classifiers are used for recommending features based on pattern matching amongst different feature sets. For example, if
you provide the pattern to Feature Store on feature set A that a column with 5 digits is a zip code, then Feature Store will
be able to identify any single column in feature set B that has 5 digits as a zip code (provided that there are not multiple
columns with 5 digits).

Consumer

This is a user with view-only rights.

Core

The Feature Store Core is an application within Feature Store and has multiple duties. We use the Core to create the
features for the database. It is also used to trigger the start of data manipulation tasks on the Spark cluster. It also
performs authentication and queries for authorization permissions.

Data source

A data source is the file you ingest into Feature Store.

Derived feature set

When you apply transformations to a feature set, it will create a derived (new) feature set.

Editor

This is a user that has been given permission by the owner allowing them to view and update a project and its contents.

Extraction

Extraction is the act of retrieving the schema from a data source.

Feature

Features are highly curated data. They are used to enhance the performance of ML models for training models and model
prediction.

Feature set

A feature set is a collection of features.

Ingesting

Ingesting is the term used to describe the act of loading a data source into Feature Store.
Joining

This is the act of combining two different feature sets.

Keys

Keys are used to search for a specific item in your data. Primary keys use in Feature Store have to be a unique value (e.g.,
a social security number).

123 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Offline Feature Store

Offline Feature Store is responsible for storing features based on big data. It stores all the metadata about feature set
schema, features, etc.

Online Feature Store

Online Feature Store is responsible for working with feature sets with which needs to be stored and obtained very quickly.

Owner

This is the person who created the project. They can view, edit, and update a project and its contents without any extra
permissions. Owners can give permission.

Permission

Permission dictates on which level you can interact with entities in Feature Store. Users with different permissions are
allowed to do more or less privileged actions.

Project

A project is used to store feature sets. It is the highest level of the organizational hierarchy. Projects are the first thing
that must be created when using Feature Store because they house all of the information the data sources, schemas, feature
sets, etc.

Registration

Registration is the act of registering feature sets into Feature Store. It is the command that creates a new feature set.

Retrieving

Retrieving is the action of re-acquiring your ingested data. You can filter data by start_date_time and end_date_time.

Reverting

Reverting is the removal of ingested data. The act of reversion creates a new version of the feature set with that data
removed.

Schema

A schema represents the features of the feature set. It is extracted from a data source.

Serialization and deserialization

Serialization is the process of converting data into a series of bytes that can be stored and transmitted between objects.
Deserialization is the reverse process where you create objects from a sequence of bytes.

Transformation

A transformation is a change to the raw data that makes it usable by a model. There are different types of transformations,
like changing the data format.

124 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Version 2.1.0 (16-07-2025)
New features

e Administrators can now limit which user roles are allowed to create projects.

¢ Administrators can now add or remove project access for other users.

e Added client.projects.admin.list() API, which allows administrators to retrieve a list of all projects, regardless
of ownership.

e Added support for transferring project ownership. For details, see Admin Transfer Ownership Example.

e Feature Set downloads can now be disabled from the UI using a configuration setting. This option is available only
to the Feature Store administrator.

e Upgraded Spark to version 3.5.6.

Fixes

e Removed the Feature Views and Machine Learning Datasets capability.
¢ The Feature View API has also been removed.

Version 2.0.2 (09-06-2025)
Fixes

e Fixed an UI issue preventing special fields to be used during schema registration.
e Fixed an issue preventing derived transformations from being created in the Ul

Version 2.0.0 (22-05-2025)
New features

e Upgraded Spark to version 3.5.5.

e Added support for Workload Identity Authentication for Azure Data Lake Gen 2 Storage and Azure PostgresQL.
e Added possibility to use path-style access for S3 in shared storage.

e Added support for SASL_PLAINTEXT for Kafka message broker.

Fixes

e Switched base images to Chainguard to reduce CVEs.

Version 1.2.0 (25—01—2024)
Fixes

e Preview now correctly show entries per selected feature set version

e Entry on My Access tab on a feature set did not show option to request permission in case user does not have any
permission

e Fix beamer location bug in Ul

o Fix error swallowing on Create project and Create feature set pages

e Expose missing preview configuration in Helm values

o Fix issue leading to wrong schema in case feature type was modified in schema on Python CLI

o Redis connection in online store is now correctly refreshed

e Fix logging configuration for spark driver and executor pods

e When maximum session length is reached, logout and redirect user to login interface

¢ Cleanup orphaned records on Redis database

e Switch installer test image to be Alpine based to reduce vulnerabilities

e Fix several online store memory leakage issues

e Fix issue with job error not being propagated in case Linkerd was enabled

e User should not be able to select day before today when creating personal access tokens

New features

e New method used to print schema in SQL format in CLIs created
o GPTe integration. When project or feature set is created or updated, information are send as a collection/document
to GPTe

125 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

e Expose button in UI to manually trigger online to offline sync

e Introduce H20 Drive as a data source

o Ability to use H20 Drive and GPTe integration even when use is authenticated using personal access token
e Ability to use GCP as offline and supporting storage

o Ability to remove major feature set version

e Automatically roll helm deployments in case config map or secrets change

e Show pending permissions on Dashboard in Ul

o Publish Conda packages for Python CLI

Version 1.1.2 (30-11-2023)
Fixes

o Fix regression which prevented using private certificate authorities
e Fix CVE-2022-1471 by upgrading to Spring 3.2 and Spark 3.5

Version 1.1.1 (15-11-2023)
Fixes

e Fix several issues when Snowflake is used as storage backend
e Improve parallelism of processing message in online store
o Fix installer tests

Version 1.1.0 (09—1 1—2023)
Fixes

o Skip leading and trailing whitespaces in column names when parsing CSV

e Fix error when Azure Gen2 was used as supporting storage and S3 as offline storage
e Fix storage backend naming on helm level

o Fix wrong paths in several endpoints used in the Ul

o Fix issue that some feature set is created twice whilst requesting higher permissions
o Update lazy ingest documentation and explain the motivation better

e Improve classifier and recommendation api documentation

e User is now able to ingest in the UI without selecting the cloud provider

o Fix issue leading to no owner being displayed in the UI on feature set tab

e Fix bug leading to Unexpected end of JSON input when inspecting preview of feature set in the Ul
o Fix all fixable CVEs to the date of the release

New features

o Ability to use Snowflake as the offline feature set storage

e Introduce access tab on the Ul where owner can see all users with access to the feature set or project

e Add support for requesting higher permission in Ul if user already has lower permissions

e Show list of derived and parent feature sets on feature set page in the UI

o Ability to use AWS SSO credentials for S3 data sources

 Ability to revert ingest in the Ul

e Mark feature set as derived if it is derived in the UI

o Introduce method and API to perform Z-ordering on a feature set

e Feature Store deployment no longer requires any cluster roles

e Add support for Azure MSI authentication for offline store

o Feature Store now respects the limitations specified by the tier

o Add ability to withdraw pending permission request

o If user requested more than one permission and the higher one is approved, the lower one are also automatically
approved

e Ability to ingest and retrieve from online feature store in Ul

o Ability to use key-pair authentication for Snowflake offline store and Snowflake data source

e Expose method in CLI on feature set level to get specific version of that feature set

« Add ability to register derived feature sets in the Ul

126 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Run database migration script as part of init script instead of directly in the pods. This way database migrations are
not affected by k8s startup probes and can finish successfully even if they take longer time.

Version 1.0.0 (27-09-2023)

New features

CLI

Ul

Ability to get latest minor version for specific major version of feature set in

Ability to see all feature set pending and manageable reviews in scope of a specific project
Expose method to open website with specific feature set or project from client

Ability to change time travel column during creating new major version

Ability to use key-pair authentication for Snowflake data source

Ability to extract schema and ingest data source from http/https locations

Secured connection is not used by default

Feature Store version is showed on the Ul

Show number of pending or manageable reviews next to the title in the left bar

Ability to list and see versions of feature sets

Ability to create new major version of feature set

Ability to schedule data ingests

Ability to download list of features in CSV format

Share link to Feature Store documentation in UI left bar

Ability to extract schema and ingest data source from http/https locations

User is redirected to feature set in case clicking on View button on feature set in review in states Created and
Approved

Backend and others

Ability to restrict access to Feature Store based on presents of specific JWT roles

Improve performance of online Feature Store

Ability to read from public S3 buckets even though credentials(correct or invalid) are provided
Introduce API to display parent and child derived feature sets

Introduce ability to test basic functionalities of feature Store directly using helm test

Alpha support for using Snowflake as storage for offline Feature Sets

Simplify changing logging configuration for whole Feature Store stack

Spark jobs no longer requires cluster-role

Expand API for getting user permissions to return permissions only for specific resource
Document better time to live and meaning of fields marking feature sets as sensitive

Fixes

Resolve all fixable vulnerabilities to the date of the release

Fix bug in Spark Operator caused by parallel updates of spark resources

During schema creation in Ul, data type and feature type enum was not populated in certain browsers

Fix UI bug that user was able to request same permission more than once

Ability to use both protocols for s3 and s3a when working with data sources in S3

About item was not visible in the Ul

Other users were able to see not approved feature sets before ingestions, this is now fixed. Only owner cam see
feature sets prior their approval

Select all files to download by default when retrieving from UI

Fix but that user was able to schedule ingestions on feature sets without access to that feature set

Do not show button to delete artifact in Ul if user does not have editor permissions

Scope is optional field when retrieving from UI now

Fix bug when Ul was not showing the error in case job failed

Use fonts in Ul from ui-kit to allow air-gaped Ul usage

Expiration for working with feature sets using user spark sessions was hard-coded to 1 hour. Now it is configurable
Fix bug when Ul was not respecting links with specific paths

127 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

e Fix bug in Ul where page was not persisted after refreshing

o Internal column (ingest id) was leaking to retrieved files which is now fixed

e In the retrieve example notebook, the dependencies are now pointing to their maven locations

o Allow unlimited expiration for personal access tokens

e Fix bug that Ul did not refresh after updating feature or feature set

e Fix bug in UI caused when opening list of versions or list of ingestions on not yet reviewed feature set
o Toggle Use Time Travel Column as Partition was incorrectly places in Ul

This version introduced breaking changes and is not compatible with older CLIs.

Version 0.19.3 (21-08-2023)
Fixes

e After the helm changes in 0.19.2, the TAM connection was not recreated correctly which is now fixed

Version 0.19.2 (17-08-2023)
New features

e Ability to pass affinity specification to Feature Store pods via Helm

e Ability to obtain JDBC connection string for core PostgreSQL database from existing secret
o Ability for namespace override in Helm

e Add telemetry.cloud.h20.ai/include: true annotation to Spark driver and executors

o Add ownership attribution labels/annotations to feature store resources

Fixes

« All fixable vulnerabilities at the time of the release have been addressed
e Fix incorrect mapping of feature set flow field in Python CLI from its internal representation

Version 0.19.1 (24—07—2023)
Fixes

e Read OAuth token from correct field after upgrade to latest Fabric8 Kubernetes library
e Fix issue with removing artifacts when using Azure as storage backend

Version 0.19.0 (20-07-2023)
Fixes

« All fixable vulnerabilities at the time of the release have been addressed

o Better handling of feature containing dot in their name

e Fix bug where record was never stored to online store in case Postgresql was used as backend

e Fix several UX issues when displaying Ul on small screens

e Fix non-deterministic output of versionChange flag on feature set and feature entities during updates
e Fix auth problems when using folder data sources

o Fix issue when user could not create personal access token with same name different user used

o Fix navigation bar to show all available cloud components

o Fix handling public data sources in UI

e Fix issue where files on Gen2 azure store were not accessible using SAS token

e Improve error message handling for out of memory issues

e Prevent generating pre-signed urls to Spark temporary files

o Fix issue with displaying job id in UI which contained the x character

e Fix issue where Canceled stated wasn’t properly displayed in jobs list on Ul

e Fix several spelling issues in the Ul

¢ Add missing time travel column to the feature set page on the Ul

o Fixing issue where backend tried to delete project first before deleting the feature sets inside the project
o Fix issue with ingest history not displaying correctly in Ul for derived feature sets

e Ensure consistency between data in the storage and the information in the database

e Ensure documentation for log configuration is up-to-date

128 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Fix problem where spark properties passed as extra spark options to operator contained space characters

New features

Implement Notifications in the Ul

Ability to create, list and revoke personal access tokens in the Ul

Ability to download pre-generated retrieve notebook via CLI and UI

Implement review process in the Ul

Ability to ingest and retrieve from UI

Expose ingest history in the UI

Ability for Feature Store administrator to specify maximum duration of a personal access token
Ability to filter jobs based on their types in the Ul

Use stable API for HPA in Feature Store Helm charts

Introduce expiration date on a feature set drafts

Version 0.18.1 (14-06-2023)

Fixes

Fix telemetry error causing pod restart after successfully sent message

Fix failure when user credentials already exists during a job

Share more logs in case sending message to telemetry service is not successful
Fix job scheduling in case of multiple parallel ingest jobs

Fix migration related to uploaded artifacts

Version 0.18.0 (01-06-2023)

Fixes

Fix scheduling of ingest and revert jobs in case there is more then 1 job on the queue
Fix bug leading to error during extract schema in UI

Change spark app status to cancelled directly when there is no pod for that job

Use string instead of UUID for project history

Fix SQL constraint violation when deleting job related to feature set draft

Strip extra spaces in URL in Python and Scala CLI

Fix position of search bar in Ul on feature set pages

Housekeeping of uploaded artifacts

New features

Ability to List jobs on Ul

Ability to see progress of jobs on Ul

Expose updated by field on project and feature set CLI entities and APIs
Expose number of retrievals on popular feature sets in Ul

Version 0.17.0 (25-05-2023)

Fixes

Improved health check for Redis

Several improved validations to register feature set UI flow

Handle case where spark driver is deleted by something else then operator

Fix feature set permission promotion when higher or equal project permission is created
Fix issue with jobs failing due to having large inputs

Generate GetFeatureSet even when obtaining a listable feature set

Fix issue with UI global search being extremely slow on high number of feature sets

Fix dashboard computation being slow when high number of feature sets exists

Fix feature view deletion bug

Fix issue with incorrect pooling of PostgreSQL connections in online store

Fix issue where incremental statistics were not computed for features containing dot in their names
Fix trace id propagation on internal exception

129 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

e Do not compute Spark telemetry details on a closed Spark session
e Prevent storing internal columns into the feature set preview

e Fix SQL constraint violation during deleting derived feature sets
e Fix SQL constraint violation when deleting parent job

New features

e Azure Gen2 Jar is now published to maven central

e Introduce feature set flow configuration - user can configure synchronization between online and offline stores
e Implement recently visited projects and feature sets

e Implement popular feature sets

e Integrate with H20 AI Cloud logging service

e Introduce PostgreSQL and remove Mongo as online backend database

e TAM support for Redis

e Helm charts provide more granular control whether IAM should be used or not

e Expose method in CLI to open feature store web

e Implement pinned feature sets

e Implement Ul home page

e Expose ingested records count in the ingest history api

e Support for passing security context for containers

e Expose button to trigger online materialization on UI

o Allow specifying join type in derived feature sets

o Allow to select join type in feature views

o Expose filter on feature sets to be reviewed

o Expose data source, time of ingestion, scope and user who performed the ingestion on the ingest history api

Version 0.16.0 (26-04-2023)
Fixes

e Do not create a new version of a feature set or feature in case nothing has changed during an update call

e Share warning message if join hasn’t joined any data during derived feature set transformation

o Improve credentials and permission sections of documentation to be more explicit

e Improve cleaning of ill k8s resources

e Implement transitive deletion of derived feature sets

e Remove left-overs from documentation regarding MongoDB

e Improve lazy ingest message to be more explicit

e Improve telemetry health-checks

e Improve Kafka health-checks

e Fix bug in Python CLI schema extraction logic regarding nested data types

o Remove transitive dependencies from Azure Gen2 dependencies jar

e Update the dependencies section of the documentation to contain valid versions

e Project in Ul should not be locked and secret by default

e Fix typo in helm charts affecting notifications configuration

o Fix handling dates prior year 1900

e Fix bug in the online store in case the data type of feature is Timestamp, and that feature is also a time travel
column

e Improve error handling in Ul

New features

o Ability to create feature sets in Ul

o Ability to order project, feature sets or features based on specific fields in UI

o Introduce API to cancel a job and improve handing of cancelled jobs

o Introduce API to download a pre-generated notebook demonstrating retrieve flow
o Introduce API to upload and download artifacts to a specific feature set

e Support for deleting of major feature set versions

e Introduce approval process in CLIs and backend

e Introduce support for LinkerD

o Expose API to mark/unmark feature as target variable

130 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

e Display number of ingested records on CLI entities and in the UI
e Introduce API for popular feature sets

e Introduce API for recent projects and recent feature sets

e Introduce configuration for dear letter in Kafka

e Improve schema representation on Python and Scala CLI

e Expose monitoring and custom data on feature schema

Version 0.15.0 (21-03-2023)
Fixes

e Throw user-friendly exception if CLIs are trying to call non-existent API

e Dashboard API returning wrong number of features

e Documentation now clearly states what type of join is used in Feature Store

e Follow Spark logic to parsing timestamps to have more generic inputs for online ingestion

e Provide stronger validation for DeltaTable data source filters

e Schedule interval is now human-readable on CLIs

o Fix redirection message in browser after login

o Fix data back-fill in case the original data had not explicit time travel column

e Feature Stores allows auth flow for users without name and e-mail now

e Fix deletion of historical feature view when feature view was deleted

e Fix deletion of jobs related to project ids

o Provide user-friendly error in case connection to API service failed from Python and Scala CLI
o Handle internal failure during online-offline sync when feature set was deleted in the meanwhile

New features

o Internal database used to store meta-data was changed from Mongo to Postgres

e Introduction of project history

o Integration with H20 Al cloud discovery service

e MongoDB collection data source introduced

o Add possibility to change partition columns when creation a new feature set version
e Expose number of ingested records on Feature Set entity in CLIs

e Introduce Viewer permission. See Permissions for more details.

e Send notification after PAT login

e Docusaurus is used as documentation tooling

o Introduce API to pause and resume scheduled ingest task

e Scheduled ingest tasks is paused automatically if it fails subsequently based on user defined boundary

Version 0.14.4 (28-02-2023)
Fixes

o Migration fixes to ensure compatibility with Driverless Al
e Time travel column, partition columns and primary keys are case-insensitive during their specification

New features

e Lookup for features in CLI is now case-insensitive

Version 0.14.3 (28-02-2023)
Fixes

o JWT token no longer requires expiration date to ensure consistent experience in H20 AT cloud

Version 0.14.2 (27-02-2023)
Fixes

e Sensitive consumer permission is not being granted if user is regular consumer

131 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store

Version 0.14.1 (20-02-2023)
Fixes

e Fix online materialization on feature sets with features containing dot in their names

Version 0.14.0 (30-01-2023)
Fixes
e Provide error if timezone is incorrect in scheduler API
e Fix “None.get” bug during subsequent update of a feature
e Fix online materialization on timestamp column with data representing date only
e Fix online retrieval where primary key is of type timestamp with data representing date only
« Replace prints by logger in python CLI

e Fix and re-introduce disable-api.deletion under new more generic API

New features

e Add tooltips to secret and locked in Ul
¢ Add docstrings to all Python CLI methods
e Show values of auto generated time travel column in human readable format

Please see Migration guide for changes and deprecations.

Version 0.13.0 (05-01-2023)
Fixes

o Avoid page reload every time access token expires
e Fix OOM error in core service while deleting feature sets with 1mln+ files

Version 0.12.2 (14-12-2022)
Fixes

o Disable Locked projects in the Feature Store website

New features

o Add Google Tag Manager (GTM) support into Feature Store website
e Add custom string representation for all entities used in CLI

Version 0.12.1 (06-12-2022)
New features

e Feature Store Ul as integral part of Cloud design

Version 0.12.0 (25-11-2022)
Fixes
e Unable to read data from S3 folder data source with path ending with slash
o Publish Java GRPC API with Java 11 instead of Java 17
 Fix rare bug in operator caused by its restart/redeployment leading to hanging jobs
o Fix bug caused by improper handling of trailing slash in S3 data source path
e Handle expired logging session more gracefully in CLIs

e Properly handle different schema exception in case of spark data frame ingestion

Version v2.1.0

132 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

New features
e Expose access control in documentation and Python & Scala clients
o Ability to create a new major version of feature set with data back-filled from older version
o Display Navigation bar in UI

e Support for custom certificate authorities in all Feature store components

Version 0.11.0 (09-11-2022)
Fixes
o Handle missing region in AWS credentials
e Retrieve correct version of feature set after lazy ingest
e Fix sample classifier documentation
e Improve documentation for statistics computation
e Start respecting consumer and sensitive consumer permission from projects on feature sets
e Wait for MLDataset materialization
e Display feature set and project owners in Ul
o Allow reverting ingests only created after derived feature set creations
e Fix 404 error when clicking of feature from Search All List
e Correctly display empty statistics on feature set in Ul
o Fix statistics re-computation after revert
e Fix preview to return the preview instead of printing
e Rename TrainingDataset to MLDataset
e Enforce order of parent feature sets information
e Fix permission check while getting feature from get feature endpoint

e Start respecting minor versions of feature set

New features
o Ability to specify reason during approval/rejection/revocation of permission on Ul
« Ability to edit project, feature set and feature meta-data in Ul
o Introduce online MLDatasets
e New endpoints for updating project, feature set and features
o Automatically detect categorical variables during statistics computation
e Add transformations functions to feature view and MLDatasets
o Expose API to get current permission of the project or feature set
e Ability to lazy ingest into a feature set

Please see Migration guide for changes and deprecations.

Version 0.10.0 (06-10-2022)
Fixes
e Fix bad computation of time travel scope

o DBetter message during create new version in case version already exists

133 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

o Remove default partitioning based on time travel column (the parameter time_travel column_ as_ partition is still
respected)

e Run ingest job on all available executors

e Fix issue when nested schema elements are not updated

e Document what formats are valid for time travel column format

e Fix running a MOJO derived feature set in case the MOJO results in same output column as is the input
e Sanitize user emails to support emails with special characters

e Return empty response in case no classifiers are defined on a feature set

e Fix problem of CLI failing in case empty AWS region is provided

e Fix converting SampleClassifiers to internal proto representation

o Fix ingest scope computation in case previous feature set time travel scope is overlapping

o Fix empty last update on fields on projects and feature sets after creation

e Preserve order of columns in joined dataframe to fix joined derived feature set random ingestion errors

New features
e Alpha release of Ul
e Capability to schedule ingests
e Feature view and training dataframe capabilities
e GRPC api exposing permissions and approval process
e Re-implement feature set preview and make sure it is available immediately without running a job
« Expand notifications to more methods (see Events for more information)

e Add md5 checks to validate integrity of uploaded pipelines to Feature store

Version 0.9.0 (07-09-2022)
Fixes
e Fix ingest of data from encrypted S3 buckets
e Ensure that ingest on non-latest major version does not update latest feature sets collection
o HPA support for feature store services
e Add TLS and TAM support to telemetry kafka stream
e Fix python retrieve holder to support calling preview and download in the same retrieve instance
e Add validation for specification of recommendation percentage specification

e Preview does not respect start_date_time and end_date_time

New features
o Ingest API now ingest only unique rows. Please check migration guide for more details.
e Expose custom data on feature level
e Add support for compound primary key
o Search API for projects/feature sets and features for Ul

134 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Version 0.8.0 (05-08-2022)
Fixes
e Fix creation of join derived feature sets with space in name
e Transaction in job handler commit instead rollback when some exception is thrown
e Rollback transaction when error occurs during updating job output
o Use file instead of env variable for job input to handle big inputs
o Fix revert on derived feature sets created using aggregation pipelines
« Fix bug preventing ingestion using specific spark pipelines
e Raise error during registration if feature set contains invalid characters
e Fix mojo derived feature set in case column contains a dot
e Fix bug where schema parser behaves differently on CLI and backend
 Support online materialization also on static data (without explicit time travel column)
o Fix retrieval of parent feature set during derived(join) feature set ingestion
o Fix join key validation in join feature sets to be case-insensitive

o Fail extract schema job in case _corrupt_record is computed

New features

e Pagination on projects and feature sets

o Improve notification API to provide more details

e Telemetry implementation

e Expose Dashboard endpoints in GRPC API

e API to delete and update recommendation classifiers

Version 0.7.1 (02-08-2022)
Fixes

e Support feature sets with high number of features
e Fix patch schema method to correctly work on nested structs

Version 0.7.0 (07-07-2022)
New features
e Recommendation engine
e Multi project search
« Validating regex as part of folder data sources before run job
o Rename (deprecate) the partitionPattern field in CSVFolder /ParquetFolder/JsonFolder/OnlineSource to filterPattern

o Ingestion validation to derived feature set operations

Fixes

e Ingesting History when a major version happens
e Creating spark pipeline file in databricks environment
e Migration for historical feature set

135 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Version 0.6.0 (15-06-2022)
New features

e Removal of deprecated derived data sources

e Timezone independent personal access tokens expiration
e GRPC API is now versioned

e Allow read the folder data sources with empty filter

Fixes

o Use projection for feature set and project during deletion to avoid obtaining full object from database

Version 0.5.0 (07-06-2022)

New features
e Introduce derived feature sets, please refer to documentation and migration guide for more information
e Introduce concept of admin to be able to manage Feature Store via admin API

e Support for Minio as source of data

Fixes
e Fix bug in statistics job quantiles computation on empty data
e Fix problem with incorrect detection of bad data in time travel column
e Disable version checks
o Fix fullyQualifiedFeatureName migration
e Fix problem with data source having spaces in their names
« Fix hanging of jobs submitted at the same time

e Fix idempotency during deleting online feature set

Version 0.4.0 (24—05—2022)
New features
e Ability to use Mongo as Online Feature Store backend
e Give possibility to define custom logdj property files to Feature Store services
e Support for TAM roles when reading data from S3 data sources
e Support for reading data from public S3 data sources
e Document usage of feature store notifications
o Hide feature set statistics for non-sensitive consumers

e Update CRD automatically during Helm release

Fixes
e Feature set scope wasn’t emptied when new major version was created
e Online to offline sync fails because of the schema mismatch
o Fix problem where job finished with state 1
e Prevent executing update on already finished job
e Don’t get job output from Mongo if not required
e Prevent retrying job in case schema is different

¢ Optimise Kafka health checks

136 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Do not throw error when CLI version is not provided during GRPC call

Fix missing import in recommendation API on Python CLI

Fix searching feature sets based on nested names

Fix bug when operator crushes when online messaging properties are missing
Fix bug with missing featureClassifiers field

Better error reporting when data in time travel column is in invalid format during ingest

Version 0.3.0 (12-05-2022)

New features

Replace the capability of creating new version during ingest by explicit api, please see migration guide
Add possibility to remotely debug Feature Store application

Add project id and feature set id as spark job pod labels

Introduce feature recommender

Compute stddev and mean incrementally

Expose TTL on register feature set GRPC api

Fixes

Improve health checks for Feature Store services

Fix error where auth pages leads to 404 error

Fix online feature store to work with both root and separate buckets

Correctly fail in case feature set contains features with same name (case insensitive)
Improve online feature store idempotency

Correctly fail in case array is being passed as primary/secondary or time travel column
Fix unsupported BinaryType error

Do not put user secrets to Spark config map

Fix incremental stats assignment in the database

Create more user friendly error in case user is not logged in Scala and Python CLI

Queue ingest job in case there are more jobs submitted at the same time and process them one by one on the backend

Please see Migration guide for more information on breaking changes introduced in this version.

Version 0.2.0 (21-04-2022)

New features

Introduce incremental statistics computation for specific feature statistics

Provide timing information about specific parts of jobs on job API

Store child job ids on job itself in CLIs and GRPC API

Publish events from Spark operator to Kubernetes, making them visible using kubectl describe
Introduce time to live configuration for entries in jobs collection

Use JSON format for logging across all Feature Store components

Significantly lower the size of the operator image by removing spark distribution from it

Expose description on the schema API

Introduce validation which prevents modification of time travel column once feature set has been created

137 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Feature type can now be specified on the schema API during registering feature set or creating a new feature set
version.

Expose metrics endpoint
Add time to live to Spark application and remove the need for spark jobs cron job

Spark operator is now resilient towards restarts

Fixes

Fix intermittent Mongo errors by updating Mongo client library to latest version
Disable retry for Out Of Memory errors

Use asynchronous call in job persister

Fix client retry in Scala client

Fix progress reporting in Scala client

Fix wrong bucket name error when using root bucket on AWS deployments

Fix bug where preview only works after downloading data

Please see Migration guide for more information on breaking changes introduced in this version.

Version 0.1.3 (08-04-2022)

Fixes

Calling update request subsequently fails when we reach version x.10

Version 0.1.2 (31-03-2022)

New features

Send notifications about various major events in feature store to notifications topic

Native support for nested data types on Schema API

Expose special data information on feature level and automatically propagate to feature set level
Support for creating a new feature set version by changing a special data information on feature
Expose auto project owner configuration

Expose online and custom data fields on GRPC api

Java GRPC api is now downloadable from feature store documentation

Fixes

Avoid duplicate unique count computation in statistics job

Run all job output handlers in transaction to avoid bad database state in case core restarts during job handling
Handle case where spark driver pod is killed by K8 before the container within pod is initialized

Prevent running multiple ingest and revert jobs on the same feature set major version

Ensure Feature Store Core can be restarted at any stage without introducing a bad state

Fix time to live migration on historical feature sets

Avoid multiple notifications from online to core about data ready to be ingested

Fix Online20fHine to work with Redis cluster deployment

Fix statistics computation

Fix project delete by stabilizing core during restarts 4+ by introducing migration to remove stale jobs

Propagate error to client in case job does not exist

138 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Fix cases that could lead to writing feature set to historical if it already existed
Ensure jobs on folder resources can work when root folder ends with slash

Fix various rare database bad states during handling revert and ingest jobs

Fix problem during fetching user id in online ingestion

Change stats computation to true by default

GRPC retry now correctly works on Python client

Please see Migration guide for more information on breaking changes introduced in this version.

Version 0.1.1 (17-03-2022)

New features

Properly refresh properties on project and feature set after updating on CLI

Expose option for specifying min and max number of Spark executors. For more information refer to deployment
section of the documentation.

Expose configuration which enables/disables notifications logging. For more information refer to deployment section
of the documentation.

Introduce Offline to Online component in online feature store, including automatic sync of offline and online stores.

More robust project and feature set update api. See the Breaking Changes section bellow.

Fixes

Fixed time to live migration to enum, it was not executed in version 0.1.0

Mark job as pending after it has been created

Refresh functionality now correctly loads only latest minor version for current major feature set version
Fix validation of online ingestion -> accept only valid json strings

Fix and test retry mechanism. Intermittent problems within jobs are now being correctly retried.
Remove incoming request from notification message as it can contain secure information

Store confidential data in Kubernetes secrets instead of as in regular configuration on custom resource
Fix regression bug causing authentication failure when using Azure service principal

Provide proper error message if job does not exist when using job api

Please see Migration guide for more information on breaking changes introduced in this version.

Version 0.1.0 (10-03-2022)

New features

Improve Spark operator to use K8s informers instead of regular polling of resources
Add owner reference to spark driver pod to its parent custom resource

Implement Online Feature Store Ingestion and Retrieve

Implement Online 2 offline feature service

Integrate Online Feature Store with deployment templates

Introduce automatic notifications for each observer request from API

Add possibility to read AWS credentials from ~/.aws/credentials

Authentication callback endpoint now properly propagates errors

139 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Fixes

Fixed problem when new Version GRPC API is switching to default values of properties such as marked for masking
Validate spaces in feature names during registration

Remove groups and roles from user collection as feature store is not using those

Fix permission problem when project editor is not getting access to feature sets

Preserve capitals in the project and feature set names

Handle failed status from operator when the driver pod gets terminated abruptly

Fix problem which could cause job with long input to fail

Version 0.0.39 (17-02-2022)

New features

Deployment Helm charts are available for download from Feature Store documentation

Fixes

Support Mongo 4.2 (Create collections during core startup)

Fix preview functionality when running on specific ingest

Fix None.get error in job output handler

Fix problem with duplicated data ingestion when time travel column is explicitly provided
Fix retry functionality - store only result of lastly retried job

Fix spark frame retrieval of specific ingest

Fix wrong ingest id column name in Scala client

Version 0.0.38 (10-02-2022)

New features

Introduce Spark Operator -> ensures Spark Jobs subsystem is scalable and asynchronous

Use enum for process interval field on grpc feature set registration API

Expose custom data on grpc feature set registration api

Support for scheduling spark executors and drivers based on matching taints

Expose configuration to change Spark log level

Ensure we have only the most permissive policy on the policies collection

Introduce historical collection for policies

Document Sparkling Water & Feature Store integration

Support for masking primitive and nested types (struct and arrays) and any nested and combination level

Introduce logging in the spark jobs

Fixes

Fix bug caused by adding permission to an user which does not exist

Statistics computation is now correctly started when triggered by asynchronous job
Fix missing tls messaging documentation

Ensure the error message from spark job can always fit into the grpc header

Avoid reading full container for meta-data in case of using folder resource

140 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Ingest job now generates warning in case there is a schema difference only in type/s
Use mounted secrets in spark jobs instead of transferring those in plain text

Handle job outputs asynchronously

Project consumer now does not add feature set consumer permission.

Ensure from featurestore import - imports all data sources

Ensure ingest history gives correct results

Ensure that unlocked project still requires feature set consumer permissions to retrieve from feature sets
Fix partitionBy migration

Fix cache migrations

Remove extra timestamp column when retrieving data as Spark

Ensure large access token (up to 16Kb) can be consumed by feature store

User default partitioning when user does not specify partition by argument in register feature set API.

Version 0.0.37 (19-01-2022)

New features

Offline Feature Store helm charts are up-to-date with latest S3 & Gen2 changes
Support for explicitly specifying credentials during schema extraction and ingest
Improved login functionality for CLI

Introduce support for partitioning

Introduce support for reverting any ingest. This change also migrates revert functionality to be based on ingest ids.
This also means that the reverted data are actually getting deleted now

Use Kafka for communication between Spark job and core. Preparing the ground for Spark operator
Expose marked for masking on feature level in CLI

Remove ingest number from ingest history as we use ingest ids now

Fixes

Introduce migration to remove temporary collections created during migrations

Fix problem with credentials for retrieving and writing spark data frames on S3 and Gen2

Fix incorrect behaviour in folder ingest capability in case feature set did not have time travel column defined
Fix bug when registering a feature set on project currently being deleted

Fix ingest using spark frame when cache is configured to use single root bucket

Gen2 & S3 support as feature store cache

Fix problem during delete - file not found

Asynchronous ingest job now correctly starts statistics computation job

Fix bug where we treated DecimalType as categorical instead numerical during statistics computation

141 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

Migration guide

From 2.0.0 to 2.1.0

Feature View API removal

As of version 2.1.0, the Feature View API is no longer available.

From 1.2.0 to 2.0.0

Release 2.x has some breaking API changes and is not backwards compatible with 1.x releases.

Scala client removal

Only Python client is supported from now on.

Permission Model Improvement

Secret and locked flags has been removed from project in version 2.0.0 and were replaced a single access modifier flag.
The access modifier flag has the following values:

Public - means that every user can see this project and feature sets within the project. This option represents
situation where project was neither locked or secret

ProjectOnly - means that every user can see the project, but only users with viewer permission can see feature sets
within this project. This value replaces locked flag.

Private - means that only owner and users the owner gave permission to can access this project and feature sets
within. This value replaces secret flag. Previously secret meant that only owners can see and access the project.
Newly, the private flag means that owner or the users the owner gave permission to have access to the project.
Hence, this way the system correctly respects the permission system. Therefore, when a project or feature set is
created as secret, only owner can see it. If the owner decides to grant permission to someone else, that someone will
also have the provided access to the project or feature set. By default, projects are created as private.

Secret flag has been removed from feature set in version 2.0.0. If users do not want to create publicly accessible feature
set, they should create feature sets in a private project. Migration script from 1.2 to 2.0 automatically marks project as
private in case the feature set was secret to avoid accidental exposure.

All feature set drafts for secret feature sets are removed during the migration. If you have any drafts like this, and you
don’t want to lose those, please create feature sets from those drafts before you start the migration process.

Changes

In CLI, methods select, exclude, append, prepend on Schema are now immutable.
API method GetIngestWriteCredentials has been removed. GenerateTemporaryUpload should be used instead
Internal Raw Data source TempParquetFile has been removed as it is no longer needed.

Ingestion from local sources (SparkDataSource among them) is disabled by default. If
ingestion from local files and SparkDataSource should be enabled, new helm value
global.storage.commonConfig.temporaryStorageUploadEnabled should be set to true

secret argument in register feature set method has been removed in all clients.
secret field has been removed on feature set entity in all clients.

secret field has been removed from the following Proto messages: FeatureSet, RegisterFeatureSetRequest,
ListableFeatureSet, UpdateFeatureSetRequest, FeatureSetDraftRequest, DraftToFeatureSetRequest,
FeatureSetDraft

Enum value FEATURE_SET_SECRET has been removed from the Proto message UpdatableFeatureSetField

Helm property core.config.isProjectLockedByDefault is removed without replacement. When project is being
created, user can select the appropriate access modifier. Grpc API GetProjectsDefault has been removed as well
without replacement. Projects are created as private by default.

142 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

From 1.1.2 to 1.2.0

The Helm parameter telemetry.window.timeDuration has been changed from integer representing minutes, to
ISO 8601-1 duration format

The helm parameter global.storage.supporting.authMethod has been moved to
global.storage.supporting.s3.authMethod or global.storage.supporting.datalakegen2.authMethod
(depends on selected backend)

The helm parameter global.storage.offline.authMethod has been moved to
global.storage.supporting.offline.s3.authMethod or global.storage.offline.datalakegen2.authMethod
or global.storage.offline.snowflake.authMethod (depends on selected backend)

The helm parameter global.storage.offline.privateKey has been moved to
global.storage.offline.snowflake.privateKey
The helm parameter global.storage.offline.passphrase has been moved to

global.storage.offline.snowflake.passphrase

The helm parameter global.storage.offline.deltalakegen2.authMethod has been moved to
global.storage.offline.datalakegen2.authMethod

The helm parameter global.storage.offline.deltalakegen2.ami.tenantId has been moved to
global.storage.offline.datalakegen2.ami.tenantIdd

The helm parameter global.storage.offline.deltalakegen2.ami.endpoint has been moved to
global.storage.offline.datalakegen2.ami.endpoint

The helm parameter global.storage.offline.deltalakegen2.ami.clientId has been moved to
global.storage.offline.datalakegen2.ami.clientId

The helm parameter global.storage.offline.deltalakegen2.ami.accountName has been moved to
global.storage.offline.datalakegen2.ami.accountName

The helm parameter global.storage.offline.deltalakegen2.ami.aadpodidbindingValue has been moved to
global.storage.offline.datalakegen2.ami.aadpodidbindingValue

The helm parameter global.storage.supporting.deltalakegen2.authMethod has been moved to
global.storage.supporting.datalakegen2.authMethod

The helm parameter global.storage.supporting.deltalakegen2.ami.tenantId has been moved to
global.storage.supporting.datalakegen2.ami.tenantId

The helm parameter global.storage.supporting.deltalakegen2.ami.endpoint has been moved to
global.storage.supporting.datalakegen2.ami.endpoint

The helm parameter global.storage.supporting.deltalakegen2.ami.clientId has been moved to
global.storage.supporting.datalakegen2.ami.clientId

The helm parameter global.storage.supporting.deltalakegen2.ami.accountName has been moved to
global.storage.supporting.datalakegen2.ami.accountName

The helm parameter global.storage.supporting.deltalakegen2.ami.aadpodidbindingValue has been moved
to global.storage.supporting.datalakegen2.ami.aadpodidbindingValue

From 1.0.0 to 1.1.0

All jobs must be finished before upgrading to Feature Store 1.1 and higher from previous versions.

The values for the option global.storage.offline.backend has been changed to s3, datalakegen2 and snowflake

The following GRPC APIs has been changed:
e RetrieveMLDatasetAsLinks, please use StartRetrieveMLDatasetAsLinksJob and
GetRetrieveMLDatasetAsLinksJobOutput after job finished to get links

From 0.19.3 to 1.0.0

Before upgrading to newer versions after 1.0.0, Feature Store must be first upgraded to 1.0.0.

Version 1.0.0 is no longer backwards compatible with older clients due to removal of several deprecated APIs. Releases
within 1.x.y will again be backwards compatible from CLI’s perspective.

Bearer token prefix is now required in Authorization header.
Starting with 1.0.0, secure connection is used by default in both Scala and Python CLI

Spark no longer requires cluster role but only a role. Before upgrading to 1.0.0, please remove the {helm-release-
name}-spark-binding. This step is required to avoid error as helm can not update cluster-role to a role.

143 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

o Starting from 1.0.0 configuration for file storage (supporting storage) is separated from offline storage. The following
Helm parameters were added:

e global.storage.offline.username

e global.storage.offline.password

e global.storage.offline.authMethod

e global.storage.offline.backend

e global.storage.offline.s3.endpoint

e global.storage.offline.s3.region

e global.storage.offline.s3.sessionRoleArn
e global.storage.offline.s3.kmsEnabled

e global.storage.offline.containers.root

e global.storage.offline.containers.data

e The following Helm parameters were renamed:

e global.config.dataBucket to global.storage.offline.containers.data

e global.config.retrieveBucket to global.storage.supporting.containers.retrieve

e core.config.commonStorageConfiguration.tempCredentialsExpiration to
global.storage.commonConfig.tempCredentialsExpiration

e core.config.offlineStorage.storageIldConversionEnabled to global.storage.offline.storageldConversionEn

e global.storage.username to global.storage.supporting.username

e global.storage.password to global.storage.supporting.password

e global.storage.authMethod to global.storage.supporting.authMethod

e global.config.storageBackend to global.storage.supporting.backend

e global.config.s3 to global.storage.supporting.s3

e global.config.s3.endpoint to global.storage.supporting.s3.endpoint

e global.config.s3.region to global.storage.supporting.s3.region

e global.config.s3.sessionRoleArn to global.storage.supporting.s3.sessionRoleArn

e global.config.s3.kmsEnabled to global.storage.supporting.s3.kmsEnabled

e global.config.rootBucket to global.storage.supporting.containers.root

e global.config.artifactsBucket to global.storage.supporting.containers.artifacts

e global.config.tempBucket to global.storage.supporting.containers.temp

e global.config.previewBucket to global.storage.supporting.containers.preview

e global.config.onlineStoreDataBucket to global.storage.supporting.containers.online

e To use the same storage for files and offline data, please use the same values for the new parameters as those used for
storage. For example:

e global.storage.supporting.username: <STORAGE_USERNAME> for offline global.storage.offline.username:
<STORAGE_USERNAME>

e global.storage.supporting.password: <STORAGE_PASSWORD> for offline global.storage.offline.password:
<STORAGE_PASSWORD>

e global.storage.supporting.backend: s3 for offline global.storage.offline.backend:
offline_storage_s3

e global.storage.supporting.s3.endpoint: <STORAGE_ENDPOINT> for offline
global.storage.offline.s3.endpoint: <STORAGE_ENDPOINT>

e global.storage.supporting.containers.root: <STORAGE_ROOT_BUCKET> for offline
global.storage.offline.containers.root: <STORAGE_ROOT_BUCKET>

e global.storage.supporting.containers.root: <STORAGE_ROOT_BUCKET> for offline

global.storage.offline.containers.root: <STORAGE_ROOT_BUCKET>
e global.storage.supporting.containers.preview to use previous generated files for preview
global.storage.offline.containers.data: <STORAGE_DATA_BUCKET>

e Helm argument global.online.postgres.connectionString has been renamed to global.online.postgres.dsn.
This parameter expects PostgreSQL JDBC connection string

o Helm arguments global.online.postgres.username and global.online.postgres.password have been removed.
Username and password (if applicable) must be passed to global.online.postgres.dsn. Please inspect PostgreSQL
connection string format for more details.

e Helm argument core.config.idpMetadataUri has been renamed to global.config.idpMetadataUri

144 © 2024 H20.ai, Inc. All rights reserved.

https://jdbc.postgresql.org/documentation/use/#connecting-to-the-database
https://jdbc.postgresql.org/documentation/use/#connecting-to-the-database
https://jdbc.postgresql.org/documentation/use/#connecting-to-the-database

H20 Feature Store Version v2.1.0

o Helm argument global.cloud.discovery.restApiPublicUri has been renamed to
global.cloud.discovery.restApiCorePublicUri

e Helm argument global.cloud.apiUrl has been removed. The value should be put to existing argument
global.cloud.discovery.grpcApiPublicUri

e The deprecated feature_set field has been removed in the following GRPC messages:

¢ GetIngestHistoryRequest

¢ StartRevertIngestJobRequest

e ListJobsRequest

e GetRecommendationRequest

e FeatureSetPermissionRequest

e ListFeatureSetsVersionRequest

¢ DeleteFeatureSetRequest

e StartIngestJobRequest

e IngestResponse

e RetrieveRequest

e StartMaterializationOnlineRequest
¢ CreateNewFeatureSetVersionRequest

o The deprecated project field has been removed in the following GRPC messages:

e ProjectPermissionRequest
e DeleteProjectRequest
e GetFeatureSetRequest

e The following GRPC APIs has been removed:

e GetProjectOwners, please use GetUserProjectPermissions instead

e GetFeatureSetOwners, please use GetUserFeatureSetPermissions instead

e ListTokens, please use ListPersonalAccessTokens instead

e Onlinelngest, please use POST call /online/api/vl/ingestion/feature-
sets/{featureSetId}/{featureSetMajorVersion} instead

e OnlineRetrieve, please use GET call /online/api/vl/retrieve/{featureSetId}/{featureSetMajorVersion}
instead

e RetrieveMLDatasetOnline, please use GET call /online/api/vl/retrieve/ml-datasets/{mlDataSetId}
instead

o The owners getter on project and feature set CLI entities has been removed in Python CLI. Please user 1ist_owners
instead.

e The owners getter on project and feature set CLI entities has been removed in Scala CLI. Please user listOwners
instead.

From 0.19.1 to 0.19.2

e Helm argument core.config.databaseName has been removed without replacement. Database must be included in
the PostgreSQL JDBC connection string

e Helm argument core.config.dbConnectionString has been renamed to core.database.dsn. This parameter
expects PostgreSQL JDBC connection string

e Helm arguments core.database.username and core.database.password have been removed. Username and
password (if applicable) must be passed to core.database.dsn. Please inspect PostgreSQL connection string format
for more details.

o The following Helm parameters were removed:

e core.config.spark.userNameAttribute - from now on there is no possibility to select which attribute will
be set to label

e The following k8 labels on spark jobs are renamed:

e job-id to featurestore.h2o0.ai/job-id
e job-name to featurestore.h2o.ai/job-name

145 © 2024 H20.ai, Inc. All rights reserved.

https://jdbc.postgresql.org/documentation/use/#connecting-to-the-database
https://jdbc.postgresql.org/documentation/use/#connecting-to-the-database
https://jdbc.postgresql.org/documentation/use/#connecting-to-the-database

H20 Feature Store Version v2.1.0

e project to cloud.h2o0.ai/workspace

e feature-set to featurestore.h2o.ai/feature-set-id and featurestore.h2o0.ai/feature-set-version

e feature-view to featurestore.h2o.ai/feature-view-id and featurestore.h2o.ai/feature-view-
version

e mldataset to featurestore.h2o0.ai/mldataset-id

e user-name to cloud.h2o.ai/creator

From 0.18.0 to 0.19.0

Starting from 0.19.0 feature name cannot contain ¢

Starting from 0.19.0 feature in partition_ by cannot be nested or have complex type (struct, array)

Starting from 0.19.0 api GetUserByMail is deleted

In Helm, extra Spark options in property sparkoperator.config.spark.extraOptions should be passed as array
elements instead as single value

From 0.16.0 to 0.17.0

Starting from 0.17.0 methods feature_ sets.register, feature_ set.flow use enum FeatureSetFlow instead of string
To enable the pg_trgm extension, which is required by the Azure platform, you can follow the steps outlined in the
Azure extensions documentation

From 0.15.0 to 0.16.0

Starting from 0.16.0 Azure Gen2 Dependencies jar doesn’t contain the transitive dependencies. Please refer to Spark
dependencies to see which dependencies must be present on your local Spark cluster to support retrieval of data
using Spark frames.

The following Helm parameters were renamed:

e global.cache.username to global.storage.username
e global.cache.password to global.storage.password
e global.config.cacheBackend to global.config.storageBackend

From 0.14.0 to 0.15.0

Kafka related Helm properties global.config.messaging.kafka.topicsConfig. [topic-
name] .retentionMs, global.config.messaging.kafka.topicsConfig. [topic-name].retentionMinutes
and global.config.messaging.kafka.topicsConfig. [topic-name] .retentionHours are replaced by single
global.config.messaging.kafka.topicsConfig. [topic-name].retentionPolicy. Policy is specified by
duration format defined in ISO 8601-1 standard.

Added new fields feature_set_id and feature_set_version and marked feature_set as deprecated in proto
message IngestResponse. feature_set field will be deleted in next major version 1.0.0.

Added new field project_id and marked project field as deprecated proto messages: ProjectPermissionRequest,
DeleteProjectRequest, GetFeatureSetRequest. project field will be deleted in next major version 1.0.0.

Added new fields feature_set_id and marked feature_set as deprecated in proto messages: ListJobsRequest,
GetRecommendationRequest, FeatureSetPermissionRequest, ListFeatureSetsVersionRequest,
DeleteFeatureSetRequest. feature_set field will be deleted in next major version 1.0.0.

Added new fields feature_set_id and feature_set_version and marked feature_set as deprecated in proto mes-
sages: GetIngestHistoryRequest, StartRevertIngestJobRequest, StartIngestJobRequest, RetrieveRequest,
StartMaterializationOnlineRequest, CreateNewFeatureSetVersionRequest. feature_set field will be deleted
in release 1.0.0

GRPC method ListTokens has been deprecated and replaced by ListPersonalAccessTokens which uses pagination.
The former method will be removed in release 1.0.0

In Scala and Python client, client.auth.pats.list() now returns iterator instead of list.

146 © 2024 H20.ai, Inc. All rights reserved.

https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-extensions

H20 Feature Store Version v2.1.0

From 0.13.0 to 0.14.0

e Deprecated behaviour starting preview job has been removed.
o Bearer token prefix is now required in Authorization header.
e All deprecated arguments in release 0.12.0 are now removed.
e All deprecated updated API methods are removed.

e Deprecated owner field has been removed.

e« On GRPC level, FeatureSetHeader has been replaced by featureSetId and featureSetVersion
fields in the following messages: OnlineRetrieveRequest, OnlineIngestRequest and
GetFeatureSetsLastMinorForCurrentMajorRequest.

e Helm properties disable-api.deletion and disable-api.role-assigment have been removed. New Helm prop-
erty prohibited.cli.methods has been introduced. This property allows the admin to specify list of meth-
ods to be disabled from CLI, such as:ai.h2o0.featurestore.api.vl.CoreService/DeleteFeatureSet,ai.h2o.
featurestore.api.vl.CoreService/DeleteProject.

¢ GRPC method listFeature has been renamed to listFeatures.

o« Event method GetFeatureSetLastMinor has been renamed to GetFeatureSet.

From 0.12.0 to 0.12.1

In Scala CLI, the arguments tags, filterBuilder and jsonQuery in featureSets.list and argument filterBuilder
in projects.listFeatureSets method are deprecated and will be removed in 0.14.0. If you need to filter the listed
feature sets, please use Scala filtering capabilities on received FeatureSet iterator.

In Python CLI, the arguments tags, filters in feature_sets.list and argument filters in
projects.list_feature_sets method are deprecated and will be removed in 0.14.0. If you need to filter the
listed feature sets, please use Python filtering capabilities on received FeatureSet iterator (such as list comprehensions).

On GRPC API, the argument query in ListFeatureSetsPageRequest is deprecated and will be removed in 0.14.0. If
you need to filter the feature sets, please filter those on the received end of your application.

From 0.11.0 to 0.12.0

From version 0.12.0, it is recommended to add prefix “Bearer” to Authorization header. Handling Authorization header
without that prefix will be removed in 0.14.0

Java GRPC API methods were previously generated into a single class. With version 0.12.0 the API is split into multiple
classes. If you are using Java GRPC api, you will need to update the imports on your application.

From 0.10.0 to 0.11.0
Deprecated GRPC methods:

e ListFeatureSets and ListFeatureSetsAcrossProjects have been removed. Please use ListFeatureSetsPage
instead.

e ListProjects has been removed. Please use ListProjectsPage instead.

e UpdateFeatureSetPrimaryKey will be removed in 0.14.0 without replacement. Changing the primary key is now
only possible during the creation of a new feature set version.

e The following will be removed in 0.14.0, so please use UpdateProject instead:

e UpdateProjectCustomData
e UpdateProjectDescription
e UpdateProjectSecret

e UpdateProjectLocked

o The following will be removed in 0.14.0, so please use UpdateFeatureSet instead:

e UpdateFeatureSetTags
e UpdateFeatureSetDataSourceDomains

147 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

e UpdateFeatureSetDescription

o UpdateFeatureSetType

o UpdateFeatureSetApplicationName

e UpdateFeatureSetApplicationId

e UpdateFeatureSetDeprecated

e UpdateFeatureSetProcessInterval

e UpdateFeatureSetProcessIntervalUnit
e UpdateFeatureSetFlow

o UpdateFeatureSetState

e UpdateFeatureSetSecret

e UpdateFeatureSetCustomData

e UpdateTimeToLiveOfflinelInterval

e UpdateTimeToLiveOfflineIntervalUnit
e UpdateTimeToLiveOnlineInterval

e UpdateTimeToLiveOnlineIntervalUnit
e UpdateFeatureSetOnlineNamespace

e UpdateFeatureSetOnlineTopic

¢ UpdateFeatureSetOnlineConnectionType
¢ UpdateFeatureSetLegalApproved

¢ UpdateFeatureSetLegalApprovedNotes

e The following will be removed in 0.14.0, so please use UpdateFeature instead:

e UpdateFeatureStatus

e UpdateFeatureType

e UpdateFeaturelmportance

e UpdateFeatureDescription

e UpdateFeatureSpecial

e UpdateFeatureAnomalyDetection
¢ UpdateFeatureCustomData

e UpdateFeatureClassifiers

o UpdateProjectOwner will be removed in 0.14.0. Please use AddProjectPermission or RemoveProjectPermission
instead.

o UpdateFeatureSetOwner will be removed in 0.14.0. Please use AddFeatureSetPermission or
RemoveFeatureSetPermission instead.

In both the Scala and Python CLI, the setter for the primary key is deprecated and will be removed in 0.14.0. Changing
the primary key is now only possible using a new argument exposed on the create new version API call.

Deprecated classifierName field has been removed from CreateRecommendationClassifierRequest GRPC APL
Deprecated preview on the retrieve holder has been removed. Please use fs.get_preview() instead.

Deprecated secondary_key field has been removed from feature set. All secondary keys are pushed into primary_key
field.

Deprecated owner field will be removed from project and feature set in 0.14.0 on API and also on proto entities. Please
use owners instead.

Starting with release 0.11.0, the retrieve method starts respecting minor versions of feature sets. That means that
running retrieve on version 1.3 retrieves the data up to version 1.3. This ensures proper consistency for external tools
depending on a specific feature set version. The data are also immutable in case of reverts. Meaning that previously, when
you reverted an ingest, the data retrieved for that feature set were different after that retrieve operation.

Note: The consistent retrieval works as explained above for all ingestions and reverts called starting with version 0.11.0.
Retrieving feature set prior version 0.10.0 leads to the original behaviour.

From 0.9.0 to 0.10.0

The collection of historical policies has been removed and migrated to a new permissions collection. This collection
contains information about previous permission updates. If a permission has been replaced by a new higher permission, its
state is PROMOTED. If the permission has been removed, its state is REVOKED.

148 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

ref .preview() has been deprecated and replaced with the new API command fs.get_preview(). This preview is
computed and stored during the first ingestion. Until the upcoming Feature Store release of 0.14.0, the get_preview()
method will compute the missing preview and store it on the backend. We highly recommend that you run this method on
prior existing feature sets before 0.14.0 to make sure that the preview is populated.

From 0.8.0 to 0.9.0

The optional arguments start_date_time and end_date_time for the Python CLI have been removed from the ingest /
ingest_async methods as they are no longer needed.

The optional arguments startDateTime and endDateTime for the Scala CLI have been removed from the ingest /
ingestAsync methods as they are no longer needed.

From 0.6.0 to 0.8.0

GRPC method listProjects is now deprecated. Please switch to the listProjectsPage API which uses pagination.
While we don't plan to remove the original methods to preserve backwards compatibility, we strongly suggest using the
paginated variant.

GRPC methods ListFeatureSets and ListFeatureSetsAcrossProjects are now deprecated. Please switch to the
ListFeatureSetsPage API which uses pagination and replaces both of the former methods. While we don't plan to
remove the original methods to preserve backwards compatibility, we strongly suggest using the paginated variant.

The list methods in Python and Scala for projects and feature sets now return iterators instead of full collections starting
from version 0.7.0.

partitionPattern is now deprecated and has been removed on folder data sources.

From 0.5.0 to 0.6.0

All Proto and GRPC classed have been moved from package ai.h2o.featurestore.core to package
ai.h2o.featurestore.api.vl. Please update your code using our GRPC API by updating your imports.

The GenerateToken RPC call now accepts a Proto timestamp as an expiration date instead of string representation.

From 0.4.0 to 0.5.0

The environment variables required to pass AWS credentials have been changed to a more generic name to support AWS
S3 and S3 compatible sources like Minio, Google Cloud, etc.

Previously, you needed to set the following environment variables to read data from AWS:

export AWS_ACCESS_KEY=my aws key
export AWS_SECRET_KEY=my secret
export AWS_REGION=my region
export AWS_ROLE_ARN=my role

Now, to achieve the same, you set the following variables:

export S3_ACCESS_KEY=my aws key
export S3_SECRET_KEY=my secret
export S3_REGION=my region
export S3_ROLE_ARN=my role

We have also renamed the AWS credentials pass on the clients from AWSCredentials to S3Credentials.

Derived feature sets

In 0.5.0, we introduced derived feature sets. Derived data sources (e.g., SparkPipeline, DriverlessAIMOJO, JoinFeatureSets)
are now deprecated and will be removed 0.6.0. As such, if you want to ingest new data to your feature sets that are using
those derived data sources, you must migrate to derived feature sets instead.

To migrate to a derived feature set, a new version needs to be created using that derived schema with the selected
transformation. Once this new version is created, ingestion is automatically triggered. This action will write all data from

149 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

the parent feature set(s) with the applied transformation. The following example shows how to do this using the Python
client:

import featurestore.transformations as t

spark_pipeline_transformation = t.SparkPipeline("...")

spark_pipeline_schema = client.extract_derived_schema([parent_feature_set],
spark_pipeline_transformation)

derived_feature_set = feature_set_to_be_derived.create_new_version(schema=spark_pipeline_schema)

Note: To allow automatic ingestion on the derived feature set that uses DriverlessAIMOJO, the new parameter
sparkoperator.driverlessAilicenseKey needs to be added to the Helm values. It should contain your license to
Driverless AI (which is kept in k8 secrets).

From 0.2.0 to 0.3.0

Prior to version 0.3.0, the partition pattern accepted date{} syntax in the folder’s data sources. This has been removed as
it is now obsolete due to several optimizations of the internal code.

Please update all your existing partition patterns and update the date{..} by .=*.

Feature set ingest API changes
Python

Previously, when ingesting data from data sources that periodically change using the Python CLI, you would use the
following API call:

fs.ingest(ingest_source, new_version_on_schema_change=True)
Now, to achieve the same, you use the following API:

new_schema = client.extract_from_source(ingest_source)

if not fs.schema.is_compatible_with(new_schema, compare_data_types=False):
patched_schema = fs.schema.patch_from(new_schema, compare_data_types=False)
new_feature_set = fs.create_new_version(schema=patched_schema,
reason="schema changed before ingest")
new_feature_set.ingest(ingest_source)

else:

fs.ingest(ingest_source)

Scala

Previously, when ingesting data from data sources that periodically change using the Scala CLI, you would use the following
APT call:

fs.ingest (ingestSource, newVersionOnSchemaChange=true)
Now, to achieve the same, you use the following API:

val newSchema = client.extractSchemaFromSource (ingestSource)

if (!fs.schema().isCompatibleWith(newSchema, compareDataTypes=false) {

val patchedSchema = fs.schema().patchFrom(newSchema, compareDataTypes=false)
val newFeatureSet = fs.createNewVersion(schema=patchedSchema,
reason="schema changed before ingest")

newFeatureSet.ingest (ingestSource)

} else {

fs.ingest (ingestSource)

}
GRPC

Previously, when ingesting data from data sources that periodically change using the GRPC API, you would use the
following API call:

150 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

val startIngestJobRequest = StartIngestJobRequest (featureSet = Some(featureSet),
newVersionOnSchemaChange=true)
blockingStub.startIngestJob(startIngestJobRequest)

Now, to achieve the same, you use the following API:

val request = FeatureSetSchemaCompatibilityRequest(featureSet = Some(featureSet),

newSchema = newSchema, compareDataTypes = false)

val response = blockingStub.isFeatureSetSchemaCompatible(request)

if (!response.isCompatible) {

val schemaPatchRequest = FeatureSetSchemaPatchRequest(featureSet = Some(featureSet),
newSchema = newSchema, compareDataTypes = false)

val schemaPatchResponse = blockingStub.patchFeatureSetSchema(schemaPatchRequest)

val patchedSchema = schemaPatchResponse.schema

val createNewVersionRequest = CreateNewFeatureSetVersionRequest(featureSet = Some(featureSet),
schema = patchedSchema, reason = "")

val createNewVersionResponse = blockingStub.createNewFeatureSetVersion(createNewVersionRequest)
val newFeatureSet = createNewVersionResponse.getFeatureSet

val startIngestJobRequest = StartIngestJobRequest(featureSet = Some(newFeatureSet), ...)
blockingStub.startIngestJob(startIngestJobRequest)
}

Feature set schema API changes

Python

Previously, when loading a schema from a feature set using the Python CLI, you would use the following APT call:
schema = feature_set.get_schema()

Now, to achieve the same, you use the following API:

schema = feature_set.schema.get ()

Scala

Previously, when loading a schema from a feature set using the Scala CLI, you would use the following API call:
val schema = feature_set.getSchema()

Now, to achieve the same, you use the following API:

val schema = feature_set.schema().get()

From 0.1.3 to 0.2.0

Prior to version 0.2.0, the feature type was determined as part of the statistics computation. Now, in version version 0.2.0,
you can specify the feature type using the schema API. The feature type can be specified explicitly or can be left empty
(i.e. the backend will automatically discover it).

We have removed the Undefined feature type because each feature now is correctly assigned its feature type after being
registered or creating a new version. We have also introduced the Composite feature type; it is used for features containing
nested features.

We have stopped the backend from automatically marking specific textual features with the Categorical feature type
since the logic behind it was not solid. Now, if you want to mark the feature type as Categorical, please specify that
during registration explicitly using the schema API.

For more information, please see the Schema API.

From 0.1.1 to 0.1.2
The Custom Resource Definition (CRD) has been changed.

The Python CLI method from_string has been renamed to create_from in the schema.

151 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

The Scala CLI argument maskedFeatures from the register feature set call has been removed. Please use the schema API
to describe which features should be masked. For example:

Python

schema["my_feature_name"].special_data.pci = True
project.register_feature_set(schema, "feature_set_name")

Scala

schema ("my_feature_name") .specialSata.pci = true
project.registerFeatureSet (schema, "feature_set_name")

The feature set type and feature type on the GRPC API has been migrated from strings to enums. This allows for better
validation.

A new parameter, jobsCredentialsKey, was added to Helm values. Please make sure to provide this. Supported sizes for
this variable are 16, 24, and 32 (in bytes)

core:

core:
salt: Yy7c8pzqSJXw6LHbUnh(Q1234
jobsCredentialsKey: Yy7c8pzqSJXw6LHbUnh(1234

From 0.1.0 to 0.1.1
Version change setter for feature removed

The Python CLI setter version_change and the Scala CLI setter versionChange on the feature has been removed. This
setter was initially exposed by accident. It is not possible to update the version change directly. It is updated automatically
on the backend.

Update metadata method removed on project and feature set

The Python CLI method update_metadata and the Scala CLI setter update_metadata have been removed from both the
project and feature set. To update the metadata simply call the setter:

Previously, this was the call to update the feature set description:
Python

feature_set.description = "new_description"
feature_set.update_metadata()

Scala

featureSet.description = "new_description"
featureSet.updateMetadata()

Now, this is the call to achieve the same and to update the metadata on the client and backend:

Python

feature_set.description = "new_description"
Scala

featureSet.description = "new_description"

GRPC project API changes

We have removed the UpdateProjectMetadata call for the GRPC API and exposed specific API calls for each field which
can be modified on the project.

Previously, to update the project description and locked using the Scala API:

152 © 2024 H20.ai, Inc. All rights reserved.

H20 Feature Store Version v2.1.0

project.description = "new_description"

project.locked = true

val request = UpdateProjectMetadataRequest(project = Some(project))
blockingStub.updateProjectMetadata(request)

Now, to achieve the same, you use the following code for each field you need to update:

blockingStub.updateProjectDescription(ProjectStringFieldUpdateRequest (project.id,
"new_description"))
blockingStub.updateProjectLocked (ProjectBooleanFieldUpdateRequest (project.id, true))

Previously, it was possible to accidentally modify fields which were not exposed for modification because the API transferred
the full project object, but that is no longer possible with the new API.

GRPC feature set API changes

We have removed the UpdateFeatureSetMetadata call for the GRPC API and exposed specific APT calls for each field
which can be modified on the project.

Previously, to update a feature set description and feature status using the Scala API, you would use the following API:

featureSet.description = "new_description"

featureSet.features.find(_.name == "feature_name").get.status = "new_status"
val request = UpdateFeatureSetMetadataRequest(featureSet = Some(featureSet))
blockingStub.updateFeatureSetMetadata(request)

Now, to achieve the same, you use the following code for each field you need to update:

val featureSetHeader = FeatureSetHeader (projectId, internalFeatureSetId,
internalFeatureSetVersion)

val descriptionUpdateRequest = FeatureSetStringFieldUpdateRequest (Some (featureSetHeader),
"new_feature_set_description")
blockingStub.updateFeatureSetDescription(descriptionUpdateRequest)

val statusUpdateRequest = FeatureStringFieldUpdateRequest (Some (featureSetHeader),
featureName, '"new_status")
blockingStub.updateFeatureStatus (statusUpdateRequest)

Previously, it was possible to accidentally modify fields which were not exposed for modification because the API transferred
the full feature set object, but that is no longer possible with the new API.

153 © 2024 H20.ai, Inc. All rights reserved.

	What is Feature Store?
	Feature Store artifacts
	Clients
	Azure Gen2 Spark dependencies

	Kubernetes deployment
	K8s helm charts

	Architecture
	High-level architecture
	Feature Store offline engine
	Feature Store online engine

	Technical components
	Running Feature Store in production
	Feature Store services
	Third-party software

	Concepts
	Projects
	Project Access Modifiers
	Features
	Feature sets

	Storage
	Storage backend
	Output data
	Incremental ingest

	Prerequisites
	Requirements
	Kubernetes cluster
	Identity provider
	PostgreSQL
	Database for online records
	Main storage
	Messaging system

	Kubernetes Helm charts
	Charts
	Supported configurations
	Deploying Feature Store with Helm

	System events
	Enable notifications
	Events producer
	Consume events

	Custom CA certificates
	CA certificates bundle
	Configure Feature Store

	H2O GPTE Integration
	Configuration possibility

	Logging
	Log structure
	Customize log format
	Use different file for log4j configuration

	Testing
	Deploy Feature Store with Helm
	Generate Personal Access Token
	From UI
	From Python client

	Create Kubernetes Secret
	Helm Test

	Configuration of Azure Active Directory client
	Register your application on portal.azure.com
	Configuration of application object properties
	Branding
	Authentication
	API permissions
	Expose an API
	Owners

	Configuration of Keycloak for PAT exchange
	Introduction
	Register new client in the realm
	Deployment

	Destroy the stack
	Snowflake prerequisites
	Steps

	Credentials configuration
	Specifying using environmental variable
	AWS S3
	Minio
	JDBC Postgres
	JDBC Teradata
	Azure credentials
	S3 credentials
	Snowflake credentials
	Teradata credentials
	Postgres credentials
	GCP credentials

	Passing credentials as a parameters
	Passing secrets to environment variables in Databricks Notebook

	Starting the client
	Client configuration

	Obtaining version
	Open Web UI
	Default naming rules
	Authentication
	Access token from external environment
	Refresh token from identity provider
	Personal access tokens (PATs)

	Permissions
	Levels of permission
	Owner
	Editor
	Sensitive consumer
	Consumer
	Viewer

	Project Access Modifiers
	Project permission API
	Add permissions to the project
	Remove permissions from the project
	Request permissions to a project
	Manage permission requests from other users

	Feature set permissions API
	Add permissions to the feature set
	Remove permissions from the feature set
	Request permissions to a feature set
	Manage feature set permissions

	Projects API
	Listing projects
	Listing feature sets across multiple projects
	Create a project
	Project Access Modifier
	Get an existing project
	Remove a project
	Update project fields
	Listing project users

	Open project in Web UI
	Schema API
	Creating the schema
	Usage
	Create a schema from a string
	Create a derived schema from a string
	Create a schema from a data source
	Create a schema from a feature set
	Create a derived schema from a parent feature set with applied transformation
	Load schema from a feature set
	Create a new schema by changing the data type of the current schema
	Create a new schema by column selection
	Create a new schema by adding a new feature schema
	Modify special data on a schema
	Modify feature type
	Set feature description
	Set feature classifier
	Save schema as string

	Feature set API
	Registering a feature set
	Time travel column selection
	Inferring the data type of date-time columns during feature set registration

	Listing feature sets within a project
	Obtaining a feature set
	Previewing data

	Setting feature set permissions
	Deleting feature sets
	Deleting feature set major versions
	Updating feature set fields
	Recommendation and classifiers
	New version API
	Feature set schema API
	Getting schema
	Checking schema compatibility
	Patching new schema

	Offline to online API
	Online to offline API
	Feature set jobs API
	Refreshing feature set
	Getting recommendations
	Marking feature as target variable
	Listing feature set users
	Derived feature sets

	Open feature set in Web UI
	Optimizing feature set storage (Delta lake backend only)
	Feature API
	Feature statistics

	Ingest API
	Offline ingestion
	Online ingestion
	Lazy ingestion

	Ingest history API
	Getting the ingestion history
	Reverting ingestion

	Retrieve API
	Downloading the files from Feature Store
	Obtaining data as a Spark Frame
	Retrieving from online

	Jobs API
	Listing jobs
	Getting a job
	Cancelling a job
	Checking job status
	Checking if job is cancelled
	Getting job results
	Checking job metrics
	How to download using RetrieveJob
	Job metadata

	Create new feature set version API
	When to create a new version of a feature set
	What happens after creating a new version
	How to create a new version
	Create a new version on a schema change
	Create a new version by specifying affected features
	Create a new version by specifying affected features and schema
	Create a new version with backfilling

	Asynchronous methods
	Spark dependencies
	Using S3 as the Feature Store storage:
	Using Azure Gen2 as the Feature Store storage:
	Using Snowflake as the Feature Store storage:
	General configuration

	Recommendation API
	Creating a regex classifier
	Creating a sample classifier
	Creating an empty classifier
	Changing a classifier manually
	Updating an existing classifier
	Deleting an existing classifier

	Feature set schedule API
	Schedule a new task
	To list scheduled tasks
	Obtaining a task
	Examining task executions
	Obtaining a lazy ingest task
	Deleting task
	Updating task fields
	Controlling task liveness
	Starting lazy ingest task
	Timezone configuration for task

	Feature set review API
	Manage review requests from other users
	List of all pending feature set reviews requests from users
	List of pending feature set reviews requests related to project
	Approve a feature set review request from the user
	Reject a feature set review request from the user
	Get a feature set to review
	Preview the data of feature set to review

	Manage own feature sets in review
	List all feature sets review requests in review
	List feature sets review requests in review related to project
	Get a feature set in review
	Preview the data of feature set in review
	Delete feature set version in in review

	Dashboard API
	Recently used projects
	Recently used feature sets
	Feature sets popularity
	Making list of favorite feature sets

	CSV example
	CSV folder example
	Example 1: directory structure
	Example 2: directory structure
	Example 3: directory structure (no date folder)

	Driverless AI MOJO example
	Delta table example
	How to apply a filter on Delta table

	JDBC example
	Joined feature sets example
	JSON example
	JSON folder example
	Example directory structure

	MongoDb example
	Parquet example
	Parquet folder example
	Example directory structure

	Snowflake example
	Spark pipeline example
	Admin Transfer Ownership Example
	Supported data sources
	CSV
	CSV folder
	Parquet
	Parquet folder
	JSON
	JSON folder
	MongoDB
	Delta table
	Supported operators
	Valid parameter combinations

	JDBC
	Snowflake table
	Snowflake Cursor object
	Spark Data Frame
	Accessing H2O Drive Data
	BigQuery (Google Cloud)

	Supported derived transformation
	Spark pipeline
	Driverless AI MOJO
	JoinFeatureSets
	Python Sparkling Water

	Key terms
	Classifier
	Consumer
	Core
	Data source
	Derived feature set
	Editor
	Extraction
	Feature
	Feature set
	Ingesting
	Joining
	Keys
	Offline Feature Store
	Online Feature Store
	Owner
	Permission
	Project
	Registration
	Retrieving
	Reverting
	Schema
	Serialization and deserialization
	Transformation
	Version 2.1.0 (16-07-2025)
	New features
	Fixes

	Version 2.0.2 (09-06-2025)
	Fixes

	Version 2.0.0 (22-05-2025)
	New features
	Fixes

	Version 1.2.0 (25-01-2024)
	Fixes
	New features

	Version 1.1.2 (30-11-2023)
	Fixes

	Version 1.1.1 (15-11-2023)
	Fixes

	Version 1.1.0 (09-11-2023)
	Fixes
	New features

	Version 1.0.0 (27-09-2023)
	New features
	Fixes

	Version 0.19.3 (21-08-2023)
	Fixes

	Version 0.19.2 (17-08-2023)
	New features
	Fixes

	Version 0.19.1 (24-07-2023)
	Fixes

	Version 0.19.0 (20-07-2023)
	Fixes
	New features

	Version 0.18.1 (14-06-2023)
	Fixes

	Version 0.18.0 (01-06-2023)
	Fixes
	New features

	Version 0.17.0 (25-05-2023)
	Fixes
	New features

	Version 0.16.0 (26-04-2023)
	Fixes
	New features

	Version 0.15.0 (21-03-2023)
	Fixes
	New features

	Version 0.14.4 (28-02-2023)
	Fixes
	New features

	Version 0.14.3 (28-02-2023)
	Fixes

	Version 0.14.2 (27-02-2023)
	Fixes

	Version 0.14.1 (20-02-2023)
	Fixes

	Version 0.14.0 (30-01-2023)
	Fixes
	New features

	Version 0.13.0 (05-01-2023)
	Fixes

	Version 0.12.2 (14-12-2022)
	Fixes
	New features

	Version 0.12.1 (06-12-2022)
	New features

	Version 0.12.0 (25-11-2022)
	Fixes
	New features

	Version 0.11.0 (09-11-2022)
	Fixes
	New features

	Version 0.10.0 (06-10-2022)
	Fixes
	New features

	Version 0.9.0 (07-09-2022)
	Fixes
	New features

	Version 0.8.0 (05-08-2022)
	Fixes
	New features

	Version 0.7.1 (02-08-2022)
	Fixes

	Version 0.7.0 (07-07-2022)
	New features
	Fixes

	Version 0.6.0 (15-06-2022)
	New features
	Fixes

	Version 0.5.0 (07-06-2022)
	New features
	Fixes

	Version 0.4.0 (24-05-2022)
	New features
	Fixes

	Version 0.3.0 (12-05-2022)
	New features
	Fixes

	Version 0.2.0 (21-04-2022)
	New features
	Fixes

	Version 0.1.3 (08-04-2022)
	Fixes

	Version 0.1.2 (31-03-2022)
	New features
	Fixes

	Version 0.1.1 (17-03-2022)
	New features
	Fixes

	Version 0.1.0 (10-03-2022)
	New features
	Fixes

	Version 0.0.39 (17-02-2022)
	New features
	Fixes

	Version 0.0.38 (10-02-2022)
	New features
	Fixes

	Version 0.0.37 (19-01-2022)
	New features
	Fixes

	Migration guide
	From 2.0.0 to 2.1.0
	Feature View API removal

	From 1.2.0 to 2.0.0
	Scala client removal
	Permission Model Improvement
	Changes

	From 1.1.2 to 1.2.0
	From 1.0.0 to 1.1.0
	From 0.19.3 to 1.0.0
	From 0.19.1 to 0.19.2
	From 0.18.0 to 0.19.0
	From 0.16.0 to 0.17.0
	From 0.15.0 to 0.16.0
	From 0.14.0 to 0.15.0
	From 0.13.0 to 0.14.0
	From 0.12.0 to 0.12.1
	From 0.11.0 to 0.12.0
	From 0.10.0 to 0.11.0
	From 0.9.0 to 0.10.0
	From 0.8.0 to 0.9.0
	From 0.6.0 to 0.8.0
	From 0.5.0 to 0.6.0
	From 0.4.0 to 0.5.0
	Derived feature sets

	From 0.2.0 to 0.3.0
	Feature set ingest API changes
	Feature set schema API changes

	From 0.1.3 to 0.2.0
	From 0.1.1 to 0.1.2
	From 0.1.0 to 0.1.1
	Version change setter for feature removed
	Update metadata method removed on project and feature set
	GRPC project API changes
	GRPC feature set API changes

