
DOCUMENTATION

For questions, please contact support@h2o.ai

H2O MLOps Version v1.0.0

Contents
What is H2O MLOps? 9

Access H2O MLOps 10
Install the H2O MLOps Python client . 10

Workflow 11
Overview . 11
Step 1: Select the workspace . 11
Step 2: Add a model . 11
Step 3: Deploy the model version . 11
Step 4: Score against the deployment . 12
Step 5: Monitor the deployed model . 12

Workspaces 13

Understand models 14
Model schema . 14

Schema format . 14
Column types . 14

Model type . 14

Add models 16

View models 17
Understand the Model details panel . 17

Update the model name and description . 17
Add a new model version . 17
View model versions . 17

MLOps model support 19
H2O Driverless AI MOJO pipeline / Python scoring pipeline . 19
H2O-3 open-source MOJO . 19
H2O Hydrogen Torch MLflow artifact . 19
Third-party model frameworks through MLflow . 19

Example walkthrough . 19

MLflow model support 23
Supported third-party models . 23
Create MLflow artifacts for third-party frameworks . 23

Understand deployments 24

Scoring runtimes 25
Runtime options . 25
Artifact names mapping . 25
Runtime names mapping . 26
MLflow Dynamic Runtime . 27

Example: Train a dynamic runtime model . 27
Generic Ephemeral volumes . 29

Create a deployment 30
Advanced settings . 31

Kubernetes options . 31
Enable or turn off model monitoring . 32
Endpoint security . 33

Driverless AI Deployment Wizard . 34
Deploying NLP models . 34

Driverless AI . 34
MLflow . 35

1 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

MLOps Processing Deployments . 35
Processing Model Creation . 35
Scoring . 37

View deployments 39
Understand the Deployments page . 39

Details . 39
Endpoints . 40
Quick scoring . 41

Missing values . 41

Vertical Pod Autoscaler (VPA) support 43
Configurations . 43

Pod Disruption Budget (PDB) 44
PDB API specification . 44
Helm chart configuration . 44

Understand model scoring 45

Quick scoring 46
Score directly from the UI . 46
Scoring with cURL scoring request . 46

Shapley values support 47
Step 1: Enable Shapley values when deploying a model . 47

For DAI experiments . 47
For H2O-3 MOJO experiments . 47

Step 2: Request Shapley values in a curl request . 47
ORIGINAL . 48
TRANSFORMED . 48

Test Time Augmentation (TTA) support 51
Step 1: Enable TTA when deploying a model . 51
Step 2: Check if the deployment has TTA support in a curl request . 51
Step 3: Score in a curl request . 51

Prediction intervals support 53
Step 1: Check if the deployment has requestPredictionIntervals support in a curl request 53
Step 2: Make a prediction with requestPredictionIntervals enabled . 53

H2O MLOps Scoring REST API: OpenAPI specification file 54

Model monitoring 55
Model monitoring with the UI . 55

Step 1: Enable model monitoring . 55
Step 2: Configure and deploy . 55
Step 3: Start scoring . 57
Step 4: View aggregated data . 57
Step 5: Analyze data in the monitoring UI . 58

Configure model monitoring with the Python client . 61
Raw data export to Kafka . 62

Batch scoring 63
Batch scoring with the UI . 63

Source spec . 63
Batch scoring with Python client . 65

H2O MLOps Python client 66

2 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Installation 67
Version compatibility . 67

Getting started 68
Prerequisites . 68
Step 1: Import the required packages . 68
Step 2: Initialize the H2O MLOps client . 68
Step 3: Create a workspace . 68
Step 4: Register an experiment as a model version . 68
Step 5: Deploy the model . 68
Step 6: Wait for the deployment to become healthy . 69
Step 7: Score data against the deployment . 69
Explore more examples . 69

Connect to H2O MLOps 70
Prerequisites . 70
Connect with SSL verification enabled . 70
Connect with private certificate . 70
Connect with SSL verification disabled . 70
Connect from H2O Notebook Labs . 71
Verify the connection . 71
Advanced configurations . 71

Configurable timeout settings . 71

Manage Workspaces 72
Prerequisites . 72
Create a workspace . 72
View workspaces . 72

Count workspaces . 72
List all workspaces . 72
List workspace aggregates . 73
Filter workspaces . 73
Retrieve a workspace . 73

Workspace properties . 73
Aggregate . 74

Update a workspace . 74
Delete a workspace . 74

Manage Experiments 75
Prerequisites . 75
Create an experiment . 75
View experiments . 75

Count experiments . 75
List experiments . 75
Filter experiments . 76
Retrieve an experiment . 76

Experiment properties . 76
Metadata . 76
Parameters . 77
Statistics . 77
Input schema . 77
Output schema . 78
Scoring runtimes . 78

Compute Kubernetes options . 78
Update an experiment . 79
Add comments to an experiment . 79
Manage experiment tags . 79

Create a tag . 79
List tags . 80

3 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Get a specific tag . 80
Add tag . 80
Update a tag . 80
Remove a tag . 81
Delete a tag . 81

Delete and restore experiments . 81
Delete using an experiment instance . 81
Restore using an experiment instance . 82
Delete using experiment UIDs . 82
Restore using experiment UIDs . 82

Handle artifacts 83
Prerequisites . 83
Add an artifact . 83
View artifacts . 83

List artifacts . 83
Filter artifacts . 83
Retrieve an artifact . 84

Artifact properties . 84
Download an artifact . 84
Convert artifacts . 85

Convert JSON artifacts . 85
Convert text artifacts . 86

Update an artifact . 86
Delete an artifact . 86

Manage Models 88
Prerequisites . 88
Create a model . 88
View models . 88

Count models . 88
List models . 88
Filter models . 88
Retrieve a model . 89

Model properties . 89
Update a model . 89
Manage model versions . 90

Register an experiment with a model . 90
List model versions . 90
Filter model versions . 90
Retrieve a model version . 91
Retrieve the experiment . 91
Unregister an experiment from a model . 91

Delete models . 92
Delete using a model instance . 92
Delete using model UIDs . 92

Configure deployments 93
Prerequisites . 93
Composition options . 93
Security options . 94
Kubernetes options . 94
Vertical Pod Autoscaler (VPA) options . 95
Pod Disruption Budget (PDB) options . 95
Environment variables . 95
CORS origins . 96
Monitoring options . 96

Manage deployments 97

4 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Prerequisites . 97
Create a deployment . 97
View deployments . 98

List deployments . 98
List deployment statuses . 98
Filter deployments . 98
Retrieve a deployment . 99

Deployment properties . 99
View deployment logs . 99

View deployment logs from a specific time . 100
Manage endpoint . 101

Configure endpoint . 101
List deployment endpoints . 101
Retrieve a deployment endpoint . 102
Detach a configured endpoint . 102
Delete an endpoint . 102

Update a deployment . 102
Delete a deployment . 103

Deployment scorer 104
Prerequisites . 104
View deployment scorers . 104

List deployment scorers . 104
Filter deployment scorers . 104
Retrieve a deployment scorer . 104

Deployment scorer properties . 105
Access endpoints . 105

View scorer state . 105
Check if the scorer is ready . 105
View scorer capabilities . 106
View schema . 106
Generate a sample request . 107
Create a payload . 107
Score against the deployment . 107

Advanced capabilities . 107
Prediction intervals . 107
Shapley values . 108
Media scoring . 108

Batch scoring 109
Configure the input source . 109
Configure the output location . 110

Create batch scoring job . 111
Wait for job completion . 112
List all jobs . 112
Retrieve a job by ID . 112
Cancel a job . 112
Delete a job . 112

Monitoring setup 113
Step 1: Define input and output columns . 113

Manual configuration . 113
Automatic configuration . 114

Step 2: Optional: Kafka integration for raw scoring logs . 114
Step 3: Edit baseline and columns before deployment . 114
Step 4: Configure monitoring for deployment . 115

Deploy with monitoring enabled . 115
Enable or disable monitoring after deployment . 115

5 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Python client migration guide 116
From v1.3.x to v1.4.x . 116

Imports . 116
Client creation . 116
Get allowed afÏnities and tolerations . 116
Create and register an experiment into a model . 117
Update an artifact’s parent . 118
Get artifact’s model-specific metadata (if applicable) . 118
Convert JSON artifact to a dictionary . 118
Get the experiment associated with a model version . 119
List scoring runtimes . 119
Create a deployment . 119
Create a deployment with new model monitoring options . 120
Wait for deployment to become healthy . 120
Get deployment state . 120
Update a deployment . 120
Access deployment scorer . 121
Score against a deployment . 122
Kubernetes options for a batch scoring job . 122
Get entity creator (if applicable) . 123
View the complete Table . 123

From v1.2.x to v1.3.x . 123
Removal of environments . 123

From v1.1.x to v1.2.x . 123
From v1.0.x to v1.1.x . 123

Minimal supported version . 123
Create a deployment . 124

H2O MLOps gRPC Gateway 125
API information . 125
API gateway health check . 125

Release notes 126
Version 1.0.0 (July 31, 2025) . 126

Python client v1.4.4 . 126
Python client v1.4.3 . 126
Python client v1.4.2 . 127
Python client v1.4.1 . 127
Python client v1.4.0 . 127

Version 0.70.7 (May 30, 2025) . 127
Version 0.70.6 (May 29, 2025) . 127
Version 0.70.5 (Apr 25, 2025) . 127
Version 0.70.4 (Apr 8, 2025) . 127
Version 0.70.3 (Apr 3, 2025) . 127
Version 0.70.2 (Apr 3, 2025) . 128
Version 0.70.1 (Mar 31, 2025) . 128
Version 0.70.0 (Mar 13, 2025) . 128
Version 0.69.7 (Feb 17, 2025) . 128
Version 0.69.6 (Feb 13, 2025) . 128
Version 0.69.5 (Feb 6, 2025) . 128
Version 0.69.4 (Jan 21, 2025) . 129
Version 0.69.3 (Jan 17, 2025) . 129
Version 0.69.2 (Jan 14, 2025) . 129
Version 0.69.1 (Jan 9, 2025) . 129
Version 0.69.0 (Dec 19, 2024) . 129

Python client v1.2.0 . 130
Version 0.68.0 (Nov 05, 2024) . 130

Python client v1.1.2 . 131
Python client v1.1.0 . 131

6 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Python client v1.0.1 . 131
Version 0.67.4 (Oct 10, 2024) . 131
Version 0.67.3 (Oct 01, 2024) . 131
Version 0.67.2 (Sep 19, 2024) . 131
Version 0.67.1 (Sep 13, 2024) . 132
Version 0.67.0 (Sep 02, 2024) . 132

Python client v1.0.0 . 132
Version 0.66.1 . 133
Version 0.66.0 (June 04, 2024) . 133
Version 0.65.1 (May 25, 2024) . 134

Python client v0.65.1a3 . 134
Python client v0.65.1a2 . 134
Python client v0.65.1a1 . 134

Version 0.65.0 (May 08, 2024) . 134
Version 0.64.0 (April 08, 2024) . 135

Python client v0.64.0a2 . 135
Python client v0.64.0a1 . 136

Version 0.62.5 . 136
Version 0.62.4 . 136
Version 0.62.1 . 136

Python client v0.62.1a7 . 137
Python client v0.62.1a6 . 137
Python client v0.62.1a5 . 137
Python client v0.62.1a4 . 137
Python client v0.62.1a3 . 137
Python client v0.62.1a2 . 137
Python client v0.62.1a1 . 137

Version 0.62.0 (September 10, 2023) . 138
Version 0.61.1 (June 25, 2023) . 138

Python client v0.61.1a3 . 139
Version 0.61.0 (May 24, 2023) . 139
Version 0.60.1 (April 02, 2023) . 139
Version 0.59.1 . 139
Version 0.59.0 (February 12, 2023) . 140
Version 0.58.0 (December 15, 2022) . 140
Version 0.57.3 (November 16, 2022) . 141
Version 0.57.2 (August 01, 2022) . 141
Version 0.56.1 (May 16, 2022) . 141
Version 0.56.0 (April 18, 2022) . 141
Version 0.55.0 (March 31, 2022) . 141
Version 0.54.1 (March 08, 2022) . 142
Version 0.54.0 (February 03, 2022) . 142
Version 0.53.0 (January 18, 2022) . 142
Version 0.52.1 (November 17, 2021) . 143
Version 0.52.0 (September 13, 2021) . 143
Version 0.51.0 (August 20, 2021) . 143
Version 0.50.1 (August 04, 2021) . 143
Version 0.50.0 (July 29, 2021) . 143
Version 0.41.2 (June 2021) . 144
Version 0.41.1 (June 2021) . 144
Version 0.41.0 (May 25, 2021) . 144
Version 0.40.1 (March 15, 2021) . 144
Version 0.40.0 (January 14, 2021) . 144
Version 0.31.3 (December 02, 2020) . 145
Version 0.31.2 (November 11, 2020) . 145
Version 0.31.1 . 145
Version 0.31.0 (October 21, 2020) . 145
Version 0.30.1 (October 08, 2020) . 145
Version 0.30.0 . 146

7 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Version 0.22.0 (July 30, 2020) . 146
Version 0.21.1 (July 07, 2020) . 146
Version 0.21.0 (June 12, 2020) . 146
Version 0.20.1 (April 02, 2020) . 146
Version 0.20.0 (April 01, 2020) . 146

Migration guide 147
From 0.70.0 to 1.0.0 . 147

Workspace integration . 147
Python client . 147
Removal of Wave UI . 147
Helm chart changes . 147
Monitoring setup changes . 147
Hash security option changes . 148

From 0.69.x to 0.70.0 . 148
Transition from Scoring Client to native batch scoring . 148

Workload identity and IAM authentication . 148
Removal of mTLS . 148
Removal of support for older H2O Driverless AI versions . 149
Removal of Pickle Runtime . 149

From 0.68.x to 0.69.0 . 150
MLOPs runtimes . 150
MLOps storage . 150
PBKDF2 hash support . 150

From 0.67.x to 0.68.0 . 150
(Optional) Vertical Pod Autoscaler (VPA) support . 150
Removal of HT runtime based on Python 3.8 . 151
Configure maximum number of Kubernetes replicas . 151
Removal of MLflow runtimes based on Python 3.8 . 151
Pickle runtime based on Python 3.12 . 151
Deployment of MLOps Telemetry as a long-running microservice . 151
Scheduler routine for MLOps Telemetry . 151
Restructured environment security options . 152
Helm changes . 152
Default deployment security option . 152
Cloud migration information: MLOps storage . 153

From 0.66.1 to 0.67.0 . 154
Announcement: Upcoming Java MOJO Runtime removal . 154
Scoring runtimes . 155
Python client . 155
Removal of Conda from Wave app . 155
Monitoring data retention . 155
Emissary . 155
Other changes . 155

Key terms 155
Workspaces . 156
BYOM (Bring Your Own Model) . 156
Experiments . 156

Experiment metadata . 156
Artifacts in MLOps . 156

Defining artifacts and experiment artifacts . 156
Artifact type . 156
Deployable artifact type . 156
Artifact processor . 156

Deployments . 157
Drift detection . 157

Drift evaluation . 157
Node afÏnity and toleration . 158

8 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

What is H2O MLOps?
H2O MLOps is an open, interoperable platform for model deployment, management, governance, monitoring, and alerting
that features integration with H2O Driverless AI, H2O-3 open source, H2O Hydrogen Torch and third-party models.

You can access H2O MLOps through:

• An interactive user interface (UI) available on the H2O AI Cloud.
• A Python client, which allows you to perform the same tasks from a Python application.

The H2O MLOps Python client can be installed from PyPI.

9 © 2024 H2O.ai, Inc. All rights reserved.

https://docs.h2o.ai/haic-documentation/overview/what-is-h2o-ai-cloud
https://pypi.org/project/h2o-mlops/

H2O MLOps Version v1.0.0

Access H2O MLOps
To access H2O MLOps, in the left navigation panel of H2O AI Cloud, click MLOps under Operations.

Install the H2O MLOps Python client
For instructions on installing the H2O MLOps Python client, see Install the H2O MLOps Python client.

10 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Workflow
Overview
The typical H2O MLOps workflow can be summarized in the following sequential steps:

• Step 1: Select the workspace
• Step 2: Add a model
• Step 3: Deploy the model version
• Step 4: Score against the deployment
• Step 5: Monitor the deployed model

In the below sections, each step above, in turn, is summarized.

Step 1: Select the workspace
To begin, select your workspace from the workspaces drop-down in the top navigation bar.

• To learn how to create and manage a workspace, see Create and manage a workspace.
• To learn how to manage workspaces using H2O MLOps Python client, see Manage workspaces.

Step 2: Add a model
After selecting a workspace, go to the Models tab in H2O MLOps and add your machine learning model.

The first model you add becomes the initial version. You can add more versions later.

• To learn more about models, see Understand models.
• To learn how to add a model, see Add models.
• To learn how to view models, see View models.
• To learn how to manage models using H2O MLOps Python client, see Manage models.

Step 3: Deploy the model version
After adding a model, create a deployment for a model version so you can score and monitor its performance.

11 © 2024 H2O.ai, Inc. All rights reserved.

https://docs.h2o.ai/haic-documentation/guide/general/workspaces

H2O MLOps Version v1.0.0

• To learn about deployments, see Understand deployments in MLOps.
• To learn how to create a deployment, see Create a deployment.
• To learn how to view deployments, see View deployments.
• To learn how to configure a deployment using H2O MLOps Python client, see Configure deployments.
• To learn how to manage deployments using H2O MLOps Python client, see Manage deployments.

Step 4: Score against the deployment
After deploying the model, you can run quick scoring on the deployment.

• To learn more about quick scoring, see Quick scoring.
• To learn how to score against deployments using H2O MLOps Python client, see Deployment scorer.

Step 5: Monitor the deployed model
After scoring, monitor the deployed model to track its performance and detect issues such as model drift.

Note: You must enable and configure model monitoring when you create the deployment.

• To learn more about model monitoring, see Model monitoring.
• To learn how to configure monitoring for your deployment using the H2O MLOps Python client, see Monitoring

setup.

12 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Workspaces
A workspace is a centralized, dedicated environment within the H2O AI Cloud platform that enables you to share resources
and collaborate on machine learning operations within the same H2O MLOps instance. Workspaces support role-based
resource sharing while allowing fine-grained access control over those shared resources.

Before you start working in H2O MLOps, you must select a workspace. Use the workspace dropdown menu in the top
navigation bar to make your selection. All operations performed within H2O MLOps are scoped to the selected workspace.

Note: Any project created in H2O Driverless AI is automatically synchronized with the H2O AI Cloud platform and
creates a new workspace with the same name, which you can use in H2O MLOps.

To learn more about creating and managing workspaces, see Create and manage a workspace.

To learn how to create and manage workspaces using the H2O MLOps Python client, see Manage workspaces.

13 © 2024 H2O.ai, Inc. All rights reserved.

https://docs.h2o.ai/haic-documentation/guide/general/workspaces

H2O MLOps Version v1.0.0

Understand models
H2O MLOps lets you register individual experiments and group them as versions of a registered model to organize a
collection of experiments efÏciently.

Before deploying an experiment, you must register it in H2O MLOps. You can either register it as a new model or add it
as a new version under an existing model. Choosing the second option creates a new version of the existing model.

A registered model is a collection of individual model versions. Registered models group related model versions that
solve a specific problem. You can register new experiments and iterations as updated versions of the model.

A model version has a one-to-one relationship with an experiment within a given Workspace. When you’re ready to
serve your best experiment, register it as a model version.

Note:

• When you register an experiment as a model, all data and metadata lineage are maintained.

• Model versions can be served in multiple deployments. There is no limitation on the number of deployments a single
model version can be a part of.

• In any given workspace, an experiment can only be registered as one model version. This allows for a one-to-one
mapping between an experiment and the model version.

Model schema
Each model can be described by its input and output column names and their types. Knowing the model schema is
essential for monitoring purposes. Currently, only models using the known schema can be deployed by MLOps.

Model schema is represented by the experiment metadata attached to the experiment. Deployer expects the model schema
to be stored in the json_value of the input_schema and output_schema keys.

Note: Natively supported Driverless AI MOJO2 and H2O-3 MOJO2 models are not required to contain the schema as
the schema is an integral part of the MOJO2 artifacts.

Schema format

The following example shows how model schema is formatted:

[{"name": "<column name>", "type": "<column type>"}, ...]

Column types

The following is a list of supported column types:

• Boolean
• Time64
• Float32
• Float64
• Int32
• Int64
• String

Note: Column type names are not case-sensitive.

Model type
Model types enumerate types outputted by artifact processors. This indirection is included due to the fact that one
particular artifact type can contain multiple internal artifacts, each of which may be consumed by different runtimes. One
particular artifact type can be processed in different ways, producing different outputs consumable by different runtimes.

A model type defines what runtime can be used for artifact deployment.

To learn more about models in H2O MLOps, see:

• Add models
• View models

14 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

• MLOps model support

15 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Add models
The following steps show how to add a model to an H2O MLOps workspace.

1. Click Models in the left navigation panel.

2. Click Add model. 3. In the Name text box, enter a name for the model. 4. In the Description text box, enter a
description for the model.

5. Click Browse files, and upload the model file. Note: Only ZIP files are supported.

6. Click Add model.

16 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

View models
To view the list of models in your workspace, click Models in the left navigation panel.

To view details for a specific model, click the model name. This action opens the Model details panel.

Understand the Model details panel
The model details panel displays the model versions, parameters, metadata, and actions related to a specific model.

Update the model name and description

You can edit the model name and description directly in the panel.

1. Enter a new name for the model.
2. Enter a new description.
3. Click Save changes.

Add a new model version

To add a new version of the model:

1. In the Model versions section, click Add new model version.

2. Click Browse file and upload the new model version. 3. Click Add new version.

Alternatively, you can click the menu icon for a specific model in the Models page and select Add new model version.

View model versions

In the Model versions section, expand a version to view the following details:

• Version: The version number of the model

17 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

• Created by: The ID of the user who created the version
• Created at: The timestamp when the version was created
• Tags: Tags to identify and group related model versions together. To add a tag, click Tags, then click Manage

tags > New tag, enter the tag name, and click Create tag.
• Active deployments: The number of active deployments using this version
• Comments: Information to share with collaborators. Enter a comment and click Add comment.
• Parameters: Model-specific parameters
• Metadata: Additional information related to the model

18 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

MLOps model support
In H2O MLOps, the following model formats are supported:

• H2O Driverless AI MOJO pipeline / Python scoring pipeline
• H2O-3 open-source MOJO
• H2O Hydrogen Torch MLflow artifact
• Third-party model frameworks through MLflow

Note: Before a model can be deployed, it must first be registered in the H2O MLOps Model Registry.

H2O Driverless AI MOJO pipeline / Python scoring pipeline
You can import H2O Driverless AI MOJO / scoring pipeline .zip files directly through the H2O DAI interface or by
dragging and dropping the file.

Alternatively, you can create an H2O MLOps deployment directly from the completed experiment page in H2O Driverless
AI.

For more information, see Deploy Driverless AI models.

The following H2O Driverless AI versions are compatible with H2O MLOps v1.0.0:

• 1.10.7
• 1.10.7.1
• 1.10.7.2
• 1.10.7.3
• 1.10.7.4
• 1.10.7.5
• 1.11.0
• 1.11.1.1
• 2.0.0
• 2.1.0
• 2.2.0
• 2.2.1
• 2.2.2

H2O-3 open-source MOJO
You can upload an H2O-3 open-source MOJO .zip file by dragging and dropping it into the interface to deploy it in H2O
MLOps.

H2O Hydrogen Torch MLflow artifact
After building a model in H2O Hydrogen Torch, you can deploy it to H2O MLOps. To learn more, see Deploy a model to
H2O MLOps through the H2O Hydrogen Torch UI.

You can also download an H2O MLOps scoring pipeline for a model built in H2O Hydrogen Torch and use it to score new
data through the H2O MLOps REST API. To learn more, see H2O MLOps pipeline.

Third-party model frameworks through MLflow
Third-party model frameworks include scikit-learn, PyTorch, XGBoost, LightGBM, and TensorFlow. You can import
models by dragging and dropping an MLflow-packaged file.

To learn more about adding third-party models to H2O MLOps, see MLflow model support.

The following examples demonstrate how to wrap third-party model frameworks such as PyTorch, scikit-learn, and custom
Python models using MLflow. You can then upload the resulting MLflow .zip file directly to H2O MLOps.

Example walkthrough

Note: Before you begin

• Install MLflow

19 © 2024 H2O.ai, Inc. All rights reserved.

https://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/projects.html#link-experiments
https://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/experiment-completed.html#completed-experiment-page
https://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/experiment-completed.html#completed-experiment-page
https://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/deployment.html#deploy-via-mlops
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/mojo-quickstart.html
https://docs.h2o.ai/h2o-hydrogen-torch/
https://docs.h2o.ai/h2o-hydrogen-torch/guide/experiments/deploy-a-model-to-h2o-mlops-through-the-h2o-hydrogen-torch-ui
https://docs.h2o.ai/h2o-hydrogen-torch/guide/experiments/deploy-a-model-to-h2o-mlops-through-the-h2o-hydrogen-torch-ui
https://docs.h2o.ai/h2o-hydrogen-torch/guide/predictions/deployment-options#h2o-mlops-pipeline
https://mlflow.org/docs/3.4.0/ml/

H2O MLOps Version v1.0.0

• Install PyTorch
• Install scikit-learn

MLflow PyTorch

Train PyTorch model
X_train, y_train = sklearn.datasets.load_wine(return_X_y=True, as_frame=True)
X_tensor = torch.from_numpy(X_train.to_numpy())
y_tensor = torch.from_numpy(y_train.to_numpy())
dataset = torch.utils.data.dataset.TensorDataset(X_tensor, y_tensor)

torch_model = torch.nn.Linear(13, 1)
loss_fn = torch.nn.MSELoss(reduction="sum")

learning_rate = 1e-6
for batch in dataset:
torch_model.zero_grad()

X, y = batch
y_prediction = torch_model(X.float())
loss = loss_fn(y_prediction, y.float())
loss.backward()

with torch.no_grad():
for param in torch_model.parameters():
param -= learning_rate * param.grad

Infering and setting model signature
Model signature is mandatory for models that are going to be loadable by the server.
Only ColSpec inputs and output are supported.
model_signature = signature.infer_signature(X_train)
model_signature.outputs = mlflow.types.Schema(
[mlflow.types.ColSpec(name="quality", type=mlflow.types.DataType.float)]
)

Save as MLflow and zip the artifact.
model_tmp = tempfile.TemporaryDirectory()
try:
model_dir_path = os.path.join(model_tmp.name, "wine_model")
mlflow.pytorch.save_model(
torch_model, model_dir_path, signature=model_signature
)
zip_path = shutil.make_archive(
os.path.join(model_tmp.name, "artifact"), "zip", model_dir_path
)
final_zip_path = os.path.abspath("wine_model_artifact.zip")
shutil.copy(zip_path, final_zip_path)
finally:
model_tmp.cleanup()

MLflow scikit-learn

Train the scikit-learn model.
X_train, y_train = sklearn.datasets.load_wine(return_X_y=True, as_frame=True)
y_train = (y_train >= 7).astype(int)

sklearn_model = ensemble.RandomForestClassifier(n_estimators=10)
sklearn_model.fit(X_train, y_train)

Infering and setting model signature
Model signature is mandatory for models that are going to be loadable by the server.

20 © 2024 H2O.ai, Inc. All rights reserved.

https://pytorch.org/
https://scikit-learn.org/stable/install.html

H2O MLOps Version v1.0.0

Only ColSpec inputs and output are supported.
model_signature = signature.infer_signature(X_train)
model_signature.outputs = mlflow.types.Schema(
[mlflow.types.ColSpec(name="quality", type=mlflow.types.DataType.float)]
)

Save as MLflow and zip the artifact.
model_tmp = tempfile.TemporaryDirectory()
try:
model_dir_path = os.path.join(model_tmp.name, "wine_model")
mlflow.sklearn.save_model(
sklearn_model, model_dir_path, signature=model_signature
)
zip_path = shutil.make_archive(
os.path.join(model_tmp.name, "artifact"), "zip", model_dir_path
)
final_zip_path = os.path.abspath("wine_model_artifact.zip")
shutil.copy(zip_path, final_zip_path)
finally:
model_tmp.cleanup()

MLflow custom Python model

Include the custom model wrapper.
class RandomForestWithVectorizor(mlflow.pyfunc.PythonModel):

def load_context(self, context):
import pickle
with open(context.artifacts["vectorizor"], "rb") as f:
self.vectorizor = pickle.load(f)
with open(context.artifacts["svd"], "rb") as f:
self.svd = pickle.load(f)
with open(context.artifacts["rf"], "rb") as f:
self.rf = pickle.load(f)

def predict(self, context, model_input):
input_vec_tfidf = self.vectorizor.transform(
self.get_input_column(model_input)
)
input_vec = self.svd.transform(input_vec_tfidf)
return self.rf.predict(input_vec)

def get_input_column(self, model_input):
return model_input["Description"]

Train/Fit the necessary components for the model.
TfidfVectorizer, TruncatedSVD, RandomForestClassifier
data_url = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/amazon-food-review/"
train_data = pd.read_csv(f"{data_url}/AmazonFineFoodReviews-train-26k.csv")

Fit data transformers: TfidfVectorizer and TruncatedSVD
vectorizor = text.TfidfVectorizer(stop_words="english")
train_tfidf_vector = vectorizor.fit_transform(train_data["Description"])

svd = decomposition.TruncatedSVD(n_components=300)
train_vector = svd.fit_transform(train_tfidf_vector)

Train RandomForestClassifier that consumes a vector
rf = ensemble.RandomForestClassifier(n_estimators=50)
rf.fit(train_vector, train_data["PositiveReview"])

21 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Create and set the model signature.
input_schema = mlflow.types.Schema([
mlflow.types.ColSpec(name="Description", type=mlflow.types.DataType.string)
])

output_schema = mlflow.types.Schema([
mlflow.types.ColSpec(name="PositiveReview", type=mlflow.types.DataType.integer)
])

model_signature = mlflow.models.signature.ModelSignature(
inputs=input_schema,
outputs=output_schema,
)

Save as MLflow and zip the artifact.
model_tmp = tempfile.TemporaryDirectory()
try:
model_dir_path = os.path.join(model_tmp.name, "sentiment_model")
vectorizor_path = os.path.join(model_tmp.name, "vectorizor.pkl")
svd_path = os.path.join(model_tmp.name, "svd.pkl")
rf_path = os.path.join(model_tmp.name, "rf.pkl")

with open(vectorizor_path, "wb") as f:
pickle.dump(vectorizor, f)

with open(svd_path, "wb") as f:
pickle.dump(svd, f)

with open(rf_path, "wb") as f:
pickle.dump(rf, f)

Create a dictionary to tell MLflow where the necessary artifacts are
artifacts = {
"vectorizor": vectorizor_path,
"svd": svd_path,
"rf": rf_path,
}
Use above defined Custom Model Wrapper
mlflow.pyfunc.save_model(
path=model_dir_path,
python_model=RandomForestWithVectorizor(),
artifacts=artifacts,
signature=model_signature
)
zip_path = shutil.make_archive(
os.path.join(model_tmp.name, "artifact"), "zip", model_dir_path
)
final_zip_path = os.path.abspath("sentiment_model_artifact.zip")
shutil.copy(zip_path, final_zip_path)
finally:
model_tmp.cleanup()

22 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

MLflow model support
H2O MLOps lets you upload and deploy MLflow models. The following sections describe this feature.

Supported third-party models
The following is a list of tested and supported third-party Python models.

Package Version
fastai >=2.7.15,<2.9.0
keras ~=3.9.1
lightgbm ~=4.6.0
mlflow >=2.14.2
onnx ~=1.17.0
scikit-learn >=1.1.3,<1.4.0
statsmodels ~=0.14.1
tensorflow ~=2.16.1
torch <2.6.0
torchvision <0.21.0
xgboost ~=1.7.1
opencv-python-headless ~=4.11.0
click <9.0.0,>=8.1.0

Create MLflow artifacts for third-party frameworks
The following is an example of how to create MLflow artifacts for third-party frameworks.

import shutil
import mlflow.sklearn
import sklearn.datasets
import sklearn.ensemble
from mlflow.models import signature
from mlflow.types import Schema, ColSpec, DataType

Train sklearn model
X_train, y_train = sklearn.datasets.load_wine(return_X_y=True, as_frame=True)
y_train = (y_train >= 7).astype(int)

sklearn_model = sklearn.ensemble.RandomForestClassifier(n_estimators=10)
sklearn_model.fit(X_train, y_train)

Infer and set model signature
model_signature = signature.infer_signature(X_train, sklearn_model.predict(X_train))
model_signature.outputs = Schema(

[ColSpec(name="quality", type=DataType.float)]
)

Define the path to store the model in the current directory
model_dir_path = "wine_model"

Save the trained sklearn model with MLflow
mlflow.sklearn.save_model(

sklearn_model, model_dir_path, signature=model_signature
)

Create a zip archive of the saved model
shutil.make_archive("artifact", "zip", model_dir_path)

23 © 2024 H2O.ai, Inc. All rights reserved.

https://mlflow.org/docs/latest/models.html

H2O MLOps Version v1.0.0

Understand deployments
In H2O MLOps, deployments are created when model version(s) are served for scoring. Model endpoint security, artifact
type, runtime, and Kubernetes options can be configured when deploying a model.

H2O MLOps supports different deployment modes:

• Real-time deployments: Make a model available as a live REST endpoint that returns predictions immediately
when given input data. Types of real-time deployments include:

• Single model deployments: Serve one model version at a time.
• A/B test deployments: Compare the performance of two or more models in production.
• Champion/Challenger deployments: Continuously compare a Champion model against one or more

Challenger models to promote the best performer.
• Batch scoring deployments: Run model scoring jobs on batches of data instead of serving predictions in real time.

You can create and manage deployments using:

• The H2O MLOps UI on H2O AI Cloud.
• The H2O MLOps Python client, which allows you to automate deployment tasks from a Python application.

To learn more about deployments, refer to the following pages:

• Create a deployment
• View deployments
• Scoring runtimes
• Vertical Pod Autoscaler (VPA) support
• Pod Disruption Budget (PDB)

To learn more about deployments using the Python client, see:

• Configure deployments
• Manage deployments
• Deployment scorer

24 © 2024 H2O.ai, Inc. All rights reserved.

https://docs.h2o.ai/haic-documentation/overview/what-is-h2o-ai-cloud

H2O MLOps Version v1.0.0

Scoring runtimes
This page describes the scoring runtimes available for model deployment, including configuration options and usage
instructions for each runtime type.

Runtime options
The selection of available runtimes is determined by the artifact type that you specify. The following list provides
information on the available options when selecting an artifact type and runtime.

Caution: note Selecting an incorrect runtime causes the deployment to fail.

Artifact type Runtime option(s) Notes
Driverless AI MOJO
pipeline/MLflow Driverless AI
MOJO pipeline

Driverless AI MOJO ScorerDriverless AI MOJO
Scorer (Shapley original only)Driverless AI
MOJO Scorer (Shapley transformed
only)Driverless AI MOJO Scorer (Shapley
all)Driverless AI MOJO Scorer (C++ Runtime)

• Original only
and Transformed
only require 2×
memory
vs. Shapley
none.• Shapley
all requires 3×
memory.• C++
Runtime requires
experiment to be
linked through
workspace.

Driverless AI Python
pipeline/MLflow Driverless AI
Python pipeline

Python Pipeline Scorer [Driverless AI
1.10.7--1.11.1.1, 2.0.0--2.2.3]

Python scorer
version must match
the Driverless AI
version used to
build the model.

H2O-3 MOJO/MLflow H2O-3 MOJO H2O-3 MOJO ScorerH2O-3 MOJO Scorer (Shapley
transformed only)

MLflow zipped [PY-3.10][CPU] HT Flexible
Runtime[PY-3.10][GPU] HT Flexible Runtime[Py
3.9--3.12] Dynamic MLflow Model Scorer

For usage details,
see MLflow
Dynamic Runtime.

Note:

• The C++ MOJO2 runtime (Driverless AI MOJO Scorer (C++ Runtime)) accepts a wider range of algorithms
Driverless AI may use that the Java runtime does not support, including BERT, GrowNet, and TensorFlow models.
If you want to use one of these models, it must be linked from Driverless AI and not be manually uploaded.

• MLflow runtimes support Python 3.9 and later.

• For end of support information on H2O Driverless AI runtimes, see the Driverless AI Prior Releases page.

Artifact names mapping
The following table describes the mapping of artifact names.

Artifact type name Storage artifact type Artifact type
DAI MOJO Pipeline dai/mojo_pipeline dai_mojo_pipeline
DAI Python Pipeline dai/scoring_pipeline dai_python_scoring_pipeline
H2O-3 MOJO h2o3/mojo h2o3_mojo
MLflow zipped python/mlflow python/mlflow.zip
MLflow DAI MOJO Pipeline mlflow/mojo_pipeline mlflow_mojo_pipeline
MLflow DAI Python Pipeline mlflow/scoring_pipeline mlflow_scoring_pipeline
MLflow H2O-3 MOJO mlflow/h2o3_mojo mlflow_h2o3_mojo

25 © 2024 H2O.ai, Inc. All rights reserved.

https://docs.h2o.ai/prior_dai/index.html

H2O MLOps Version v1.0.0

Runtime names mapping
The following table describes the mapping of runtime names.

Compatible model Runtime name Runtime
Driverless AI MOJO models (Java
runtime)

Driverless AI MOJO Scorer dai_mojo_runtime

Driverless AI MOJO models (C++
runtime) - supports all Shapley
contribution types and is expected to
have significantly lower memory usage

Driverless AI MOJO Scorer (C++
Runtime)

dai-mojo-cpp_experimental

Driverless AI MOJO models (Java
runtime) - with Shapley contributions
for original features

Driverless AI MOJO Scorer (Shapley
original only)

mojo_runtime_shapley_original

Driverless AI MOJO models (Java
runtime) - with Shapley contributions
for transformed features

Driverless AI MOJO Scorer (Shapley
transformed only)

mojo_runtime_shapley_transformed

Driverless AI MOJO models (Java
runtime) - with Shapley contributions
for both original and transformed
features

Driverless AI MOJO Scorer (Shapley
all)

mojo_runtime_shapley_all

Driverless AI Python Scoring Pipeline
models created by Driverless AI 1.10.7

Python Pipeline Scorer [Driverless AI
1.10.7]

python-
scorer_dai_pipelines_1107

Driverless AI Python Scoring Pipeline
models created by Driverless AI
1.10.7.1

Python Pipeline Scorer [Driverless AI
1.10.7.1]

python-
scorer_dai_pipelines_11071

Driverless AI Python Scoring Pipeline
models created by Driverless AI
1.10.7.2

Python Pipeline Scorer [Driverless AI
1.10.7.2]

python-
scorer_dai_pipelines_11072

Driverless AI Python Scoring Pipeline
models created by Driverless AI
1.10.7.3

Python Pipeline Scorer [Driverless AI
1.10.7.3]

python-
scorer_dai_pipelines_11073

Driverless AI Python Scoring Pipeline
models created by Driverless AI 1.11.0

Python Pipeline Scorer [Driverless AI
1.11.0]

python-
scorer_dai_pipelines_1110

Driverless AI Python Scoring Pipeline
models created by Driverless AI
1.11.1.1

Python Pipeline Scorer [Driverless AI
1.11.1.1]

python-
scorer_dai_pipelines_11111

Driverless AI Python Scoring Pipeline
models created by Driverless AI 2.0.0

Python Pipeline Scorer [Driverless AI
2.0.0]

python-scorer_dai_pipelines_200

Driverless AI Python Scoring Pipeline
models created by Driverless AI 2.1.0

Python Pipeline Scorer [Driverless AI
2.1.0]

python-scorer_dai_pipelines_210

Driverless AI Python Scoring Pipeline
models created by Driverless AI 2.2.3

Python Pipeline Scorer [Driverless AI
2.2.3]

python-scorer_dai_pipelines_223

H2O-3 MOJO models H2O-3 MOJO Scorer h2o3_mojo_runtime
H2O-3 MOJO models H2O-3 MOJO Scorer (Shapley

transformed only)
h2o3_mojo_runtime_shapley_transformed

H2O Hydrogen Torch MLflow models [PY-3.10][CPU] HT Flexible Runtime python-
scorer_hydrogen_torch_cpu_py310

H2O Hydrogen Torch MLflow models [PY-3.10][GPU] HT Flexible Runtime python-
scorer_hydrogen_torch_gpu_py310

MLFlow non-H2O.ai models created
with Python 3.9

[Py 3.9] Dynamic MLflow Model
Scorer

python-scorer_mlflow_dynamic_39

MLFlow non-H2O.ai models created
with Python 3.10

[Py 3.10] Dynamic MLflow Model
Scorer

python-
scorer_mlflow_dynamic_310

MLFlow non-H2O.ai models created
with Python 3.11

[Py 3.11] Dynamic MLflow Model
Scorer

python-
scorer_mlflow_dynamic_311

26 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Compatible model Runtime name Runtime
MLFlow non-H2O.ai models created
with Python 3.12

[Py 3.12] Dynamic MLflow Model
Scorer

python-
scorer_mlflow_dynamic_312

MLflow Dynamic Runtime
The MLflow Dynamic Runtime lets you deploy MLflow models with diverse dependencies in H2O MLOps. The following
steps describe how to deploy a dynamic MLflow runtime deployment in H2O MLOps.

Note: For an example of how to train a dynamic runtime, see Train a dynamic runtime.

1. Save your model using the mlflow.pyfunc.save_model function call. Use the pip_requirements parameter to
specify the Python package dependencies required by the model.

mlflow.pyfunc.save_model(
path=...,
python_model=...,
artifacts=...,
signature=...,
pip_requirements=..., # <- Use this parameter to override libs for dynamic runtime

)

2. After saving the model, create a zip archive of the saved model directory. Ensure that a requirements file
(requirements.txt) that lists all dependencies is included in the zip archive. The following is an example of
the expected structure for the zip file from a TensorFlow model:

tf-model-py310
��� MLmodel
��� artifacts
� ��� tf.h5
��� conda.yaml
��� python_env.yaml
��� python_model.pkl
��� requirements.txt

3. Depending on whether you are using Python 3.9, Python 3.10, Python 3.11, or Python 3.12 select from one of the
following options:

• [PY-3.9] MLflow Dynamic Model Scorer
• [PY-3.10] MLflow Dynamic Model Scorer
• [PY-3.11] MLflow Dynamic Model Scorer
• [PY-3.12] MLflow Dynamic Model Scorer

Note: The MLflow Dynamic Runtime has a fixed MLflow dependency, which is MLflow 2.14.2. This means that the
MLflow Dynamic Runtime is not guaranteed to work with a different version of MLflow model.

Example: Train a dynamic runtime model

The following example demonstrates how to train a dynamic runtime with TensorFlow:

Import libraries
import mlflow
import pandas as pd
import shutil
import tensorflow as tf
from sklearn import datasets

Load and prepare data
diabetes = datasets.load_diabetes()
X = diabetes.data[:, 2:3] # Use only one feature for simplicity
y = diabetes.target

27 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Build and train TensorFlow model
tf_model = tf.keras.models.Sequential([

tf.keras.layers.Dense(1, input_dim=1)
])
tf_model.compile(optimizer='adam', loss='mean_squared_error')
tf_model.fit(X, y, epochs=10)

tf_model_path = "tf.h5"

tf_model.save(tf_model_path, save_format="h5")

Enable the TensorFlow model to be used in the Pyfunc format
class PythonTFmodel(mlflow.pyfunc.PythonModel):

def load_context(self, context):
import tensorflow as tf
self.model = tf.keras.models.load_model(context.artifacts["model"])

def predict(self, context, model_input):
tf_out = self.model.predict(model_input)
return pd.DataFrame(tf_out, columns=["db_progress"])

Generate signature from your model definition
model = PythonTFmodel()
context = mlflow.pyfunc.PythonModelContext(model_config=dict(), artifacts={"model": tf_model_path})
model.load_context(context)
x = pd.DataFrame(X, columns=["dense_input"])
y = model.predict(context, x)
signature = mlflow.models.signature.infer_signature(x, y)

Specify a file path where the model will be saved
mlflow_model_path = "./tf-model-py310"

Save model using MLflow
mlflow.pyfunc.save_model(

path=mlflow_model_path,
python_model=PythonTFmodel(),
signature=signature,
artifacts={"model": tf_model_path},
pip_requirements=["tensorflow"]

)

Package model as a zip archive
shutil.make_archive(

mlflow_model_path, "zip", mlflow_model_path
)

The following is the structure of the zip file that is generated in the preceding example:

- tf-model-py310
- MLmodel
- artifacts
- tf.h5
- conda.yaml
- python_env.yaml
- python_model.pkl
- requirements.txt

28 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Generic Ephemeral volumes

The custom additional volumes feature now supports emptyDir volumes and ephemeral volumes.

Note: The storageClassName property for volumes is optional. If not provided, the default storage class will be used.

Example configuration

Custom additional volumes with selected mount paths.
This section, as well as each of its fields, is optional.
volume-mounts = [
{
name = "ephemeral_volume"
type = "ephemeral"
properties = [
{ name = "size", value = "1Gi" }

]
paths = ["/ephemeral_volume_1", "/ephemeral_volume_2"]

},
{
name = "emptyDir_volume"
type = "emptyDir"
properties = [
{ name = "medium", value = "Memory" }

]
paths = ["/emptyDir_volume_1", "/emptyDir_volume_2"]

}
]

YAML configuration The volumeMounts section should be added to the runtime specification of the Helm Chart.

runtimes:
volumeMounts:

- name: "dev-shm"
type: "ephemeral"
properties:

size: "1Gi"
paths: ["/tmp"]

29 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Create a deployment
Note: You must add model versions to H2O MLOps before deploying them. For more information, see Add models.

Follow these steps to deploy a model version in H2O MLOps:

1. In the left navigation panel, click Models.
2. Expand the model that includes the version you want to deploy.
3. Click the More options menu (�) next to the version, then select Deploy version.

4. In the Create new deployment page, specify the following:

1. Enter a name and, optionally, a description for the deployment.

2.

Specify a deployment type for the deployment. Select one of the following options:

- **Single model:** Select one model/model version for the deployment.

- **A/B test:** A/B testing in MLOps lets you compare the performance of two or more models. When requests are sent to an A/B deployment, they are directed to the selected models at a specified ratio known as the traffic percentage. For example, if the deployment consists of two models and the traffic percentage is set to 50% / 50%, each model receives half of the total incoming requests. Select two models/model versions, and then configure the traffic (that is, request percentage allocation) to each model. Note that model monitoring is not available for this deployment mode.

- **Champion/challenger:** This deployment mode lets you continuously compare your chosen best model (Champion) to a Challenger model. Select a champion and a challenger model. Before creating the deployment, review your selected models and replace them if necessary. Note that model monitoring is not available for this deployment mode.

Note: For A/B test and champion/challenger deployments, use two models with the same schema. That is, the models
must have identical input and output column names and data types.

3. Artifact type and runtime: Select an artifact type and runtime for the deployment. (Note: For more information
on scoring runtimes in H2O MLOps, see Scoring runtimes.) Each entry in the Artifact Type and Runtime drop-down
represents an artifact that is linked to the selected model and is deployable by MLOps. Note that admins have the
option to configure and add additional runtimes.

30 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

4. Click Deploy.

Advanced settings
This section describes various advanced settings that you can configure for your deployment. To expand the Advanced
settings section, click the > expander arrow in the Create new deployment page.

Kubernetes options

Each of the following Kubernetes (K8s) options (resource requests, limits) are applied on a per-replica basis.

Replicas (optional) Specify the number of static replicas of the model you want to deploy. This is the number of
concurrent pods (instances of the model) that are deployed. Deploying multiple replicas enables the model to handle more
simultaneous scoring requests.

Specifying multiple replicas is useful for load balancing and achieving high availability for scoring tasks. For H2O MLOps
version 0.65 and later, set replicas to zero to scale down the deployment. In versions prior to 0.65, set the number of
replicas to -1 to achieve the same effect.

Note: Each of the following Kubernetes options (resource requests, limits) are applied on a per-replica basis.

Resource requests and limits (optional) Use resource requests to specify the expected memory or CPU usage for a
model. Resource limits define the maximum usage allowed. This helps Kubernetes manage scheduling and prevent resource
overuse.

• Requests: Resource requests determine the amount of resources the deployment asks Kubernetes to provide it. For
example, if a replica requests 256Mi of memory, Kubernetes schedules the deployment on any node that has enough
memory available to satisfy the stated requirement.

31 © 2024 H2O.ai, Inc. All rights reserved.

https://kubernetes.io/docs/reference/glossary/?fundamental=true#term-replica

H2O MLOps Version v1.0.0

• Limits: Resource limits determine the maximum amount of resources that are available to a deployment. If a
deployment exceeds a limit on the amount of memory allocated to it, the deployment is restarted. Note that the
deployment does not restart if it exceeds a CPU limit.

Note: By default, the Kubernetes resource requests and limits fields are automatically populated based on the selected
runtime and artifact type.

Additional fields for any existing custom resources that have been set up by an admin in your Kubernetes cluster can be
added by clicking the + button.

Note:

• The resource requests and limits fields must be defined using the quantity sufÏxes used in Kubernetes. The default
values for Memory and CPU requests are 256Mi and 100m respectively. For more information, see Resource units in
Kubernetes.

• By default, resources are not limited.
• When specifying custom resources, if Kubernetes is not able to satisfy the stated custom value(s), then the pod

cannot be scheduled.
• You can use the H2O MLOps Python client to update the Kubernetes resources and replicas of a deployment after

it’s created. Use this to scale resources up for performance or down for cost. To do this, call the update function on
the MLOpsScoringDeployment instance with updated kubernetes_options.

• For more information on resource requests and limits in Kubernetes, see Resource Management for Pods and
Containers.

• For more information about Pod Disruption Budget (PDB), see Pod Disruption Budget (PDB).

Enable or turn off model monitoring

To enable or turn off the model monitoring option, click the Enable Monitoring toggle. By default, the model monitoring
option is turned off. If model monitoring is enabled, scoring data is saved.

32 © 2024 H2O.ai, Inc. All rights reserved.

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#resource-units-in-kubernetes
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#resource-units-in-kubernetes
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

H2O MLOps Version v1.0.0

Endpoint security

Select one of the following levels of endpoint security.

Note: The default security option can be configured at securityOptions.default in the values.yaml file
(charts/mlops/values.yaml). By default, this is set to Passphrase (stored as plain text).

• No security - To skip configuration of endpoint security, select this option.

• Passphrase (Stored as plain text) - The passphrase is stored in plain text in the database. If this option is
selected, the passphrase is visible in the UI after the model is deployed.

• Passphrase (Stored hashed) - The passphrase is stored as a hashed value in the database. If this option is
selected, the passphrase is not visible in the UI after the model is deployed.

• To support this option during deployment creation and update, add PASSPHRASE_HASH_TYPE_PBKDF2 un-
der securityOptions.activated in the values.yaml file (charts/mlops/values.yaml) . Note that having
PASSPHRASE_HASH_TYPE_BCRYPT is neither sufÏcient nor required.

securityOptions:
activated:

-
- "PASSPHRASE_HASH_TYPE_PBKDF2"
-

• Token Authentication - Supports multiple different OIDC token issuers. Note that this option requires the
following additional configuration when deploying the H2O MLOps:

• To support this option during deployment creation and update, update securityOptions.activated in the
values.yaml file (charts/mlops/values.yaml) to include the value AUTHORIZATION_PROTOCOL_OIDC in the
list:

securityOptions:
activated:

-
- "AUTHORIZATION_PROTOCOL_OIDC"
-

Note: This option requires additional configuration, including setting deployer.config.securityProxy.oidcIssuers
in the values.yaml file. This includes values such as the OIDC issuer URL and TLS credentials.

33 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Driverless AI Deployment Wizard
The following steps describe how you can create H2O MLOps deployments directly from the completed experiment page in
H2O Driverless AI.

Note:

To use this deployment option, you must specify h2o_mlops_ui_url in the config.toml file.

1. On the completed experiment page, click Deploy.

2. Click the H2O MLOps button. This action results in one of the following outcomes:

• The experiment is assigned to a single Project: You are redirected to the Project detail page in the H2O
MLOps app.

• The experiment is assigned to multiple Projects: Select a project to go to in the H2O MLOps app.
Alternatively, create a new Project to assign the experiment to. If you choose to create a new Project, you are
prompted to enter a name and description for the Project. Once the new Project has been created and the
experiment has been linked to it, you can click the Go to MLOps page button to navigate to the Project
detail page in the H2O MLOps app.

• The experiment isn’t assigned to any Project: Select a Project to link the experiment to. Alternatively,
create a new Project and link the experiment to it.

Deploying NLP models
H2O MLOps supports the deployment of Driverless AI and MLflow natural language processing (NLP) models.

Driverless AI

To deploy a Driverless AI NLP model, refer to the following steps:

1. In Driverless AI, pick a text dataset such as the Amazon Fine Food Reviews dataset or Airline Twitter Sentiment
dataset.

2. Train a DAI model following the NLP-specific steps described in the documentation on NLP experiments in DAI.

3. Link the NLP experiment to an MLOps project. For more information, see the Driverless AI documentation on
linking experiments.

34 © 2024 H2O.ai, Inc. All rights reserved.

https://docs.h2o.ai/driverless-ai/1-10-lts/docs/userguide/nlp.html
https://docs.h2o.ai/driverless-ai/1-10-lts/docs/userguide/projects.html#link-experiments
https://docs.h2o.ai/driverless-ai/1-10-lts/docs/userguide/projects.html#link-experiments

H2O MLOps Version v1.0.0

4. Deploy as either a MOJO or a Python scoring pipeline. Note that using PyTorch or TensorFlow may make the
MOJO unsupported.

5. The scorer is available at the endpoint URL provided by MLOps. You can use curl to test the endpoint. To see how
this might look, refer to the following example request:

ububtu@ubuntu:/home/ubuntu$ curl -X POST -H "Content-Type: application/json" -
d @- DEPLOYMENT_ENDPOINT_URL << EOF
> {
> "fields": [
> "Description",
> "Summary"
>],
> "rows": [
> [
> "text",
> "text"
>]
>]
> }
> EOF
{"fields":["PositiveReview.0","PositiveReview.1"],"id":"1c2ec2f0-74c7-11ec-ad8e-
3ee53b9e28aa","score":[["0.24813014","0.75186986"]]}nick@NPng-P5550:~/h2oworkspace/mlops-byom-
images/python-scorer$

MLflow

To deploy an MLflow NLP model, refer to the following steps:

1. Train your model.

2. Wrap the model in an MLflow model. For more information, see the example on uploading an MLflow custom Python
model.

3. Upload and deploy the model using MLOps. For more information, see Deploying a model.

MLOps Processing Deployments
The following example demonstrates how to make an H2O MLOps deployment that implements custom logic to
pre/post/chain process any number of other MLOps deployments.

import mlflow
import pandas
import requests
import typing

Processing Model Creation

Helper methods.

def convert_scores_to_pandas(
scores_json: typing.Dict[str, typing.Any],

) -> pandas.DataFrame:
return pandas.DataFrame(

data=scores_json["score"], columns=scores_json["fields"]
).astype(float, errors="ignore")

def score_to_json(
pdf: pandas.DataFrame,
score_url: str,
score_passphrase: typing.Optional[str],
include_fields_in_output: typing.Optional[typing.List[str]]

) -> typing.Dict[str, typing.Any]:

35 © 2024 H2O.ai, Inc. All rights reserved.

https://github.com/h2oai/model-manager/blob/master/docs/userguide/examples/byom_with_custom_python_model.py
https://github.com/h2oai/model-manager/blob/master/docs/userguide/examples/byom_with_custom_python_model.py

H2O MLOps Version v1.0.0

payload = dict(
fields=list(pdf.columns),
rows=pdf.fillna("").astype(str).to_dict("split")["data"],

)
if include_fields_in_output:

payload["includeFieldsInOutput"] = include_fields_in_output
result = requests.post(

url=score_url, json=payload, headers={"Authorization": f"Bearer {score_passphrase}"}
)
result.raise_for_status()
return result.json()

def score_to_pandas(
pdf: pandas.DataFrame,
score_url: str,
score_passphrase: typing.Optional[str],
include_fields_in_output: typing.Optional[typing.List[str]]

) -> typing.Dict[str, typing.Any]:
scores_json = score_to_json(

pdf, score_url, score_passphrase, include_fields_in_output
)
return convert_scores_to_pandas(scores_json)

MLflow model definition example. Note that you can implement any pre, post, chaining, etc. logic, utilizing the score
helper methods to get results from other models.

class CCProcessor(mlflow.pyfunc.PythonModel):
"""Converts output to binary result based on threshold."""

def predict(self, context, model_input) -> pandas.DataFrame:
target_column = "default payment next month"
id_column = "ID"
threshold = 0.3

scores_dataframe = score_to_pandas(
model_input,
score_url="https://model.internal.dedicated.h2o.ai/3ae169a7-21a6-419b-bbf2-

bce0ef3463bc/model/score",
score_passphrase="j3UyU2PLB6k3tnpYW1CfusDXPgm72mu2kaR2elxL9jA",
include_fields_in_output=[id_column]

)

processed_dataframe = pandas.DataFrame()
processed_dataframe[id_column] = scores_dataframe[id_column].astype(int)
processed_dataframe[

f"{target_column} | threshold={threshold}"
] = scores_dataframe[f"{target_column}.1"] > threshold
return processed_dataframe

Test predict method.

x = pandas.read_csv("/Users/jgranados/datasets/creditcard.csv")[:10]
y = CCProcessor().predict(context=None, model_input=x)
y

ID default payment next month | threshold=0.3
0 1 True
1 2 True
2 3 False
3 4 False

36 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

ID default payment next month | threshold=0.3
4 5 False
5 6 False
6 7 False
7 8 False
8 9 True
9 10 False

Define schema (required) using dataframes from testing.

model_signature = mlflow.models.signature.infer_signature(x,y)
model_signature

inputs:
['ID': long, 'LIMIT_BAL': long, 'SEX': long, 'EDUCATION': long, 'MARRIAGE': long, 'AGE': long, 'PAY_0': long, 'PAY_2': long, 'PAY_3': long, 'PAY_4': long, 'PAY_5': long, 'PAY_6': long, 'BILL_AMT1': long, 'BILL_AMT2': long, 'BILL_AMT3': long, 'BILL_AMT4': long, 'BILL_AMT5': long, 'BILL_AMT6': long, 'PAY_AMT1': long, 'PAY_AMT2': long, 'PAY_AMT3': long, 'PAY_AMT4': long, 'PAY_AMT5': long, 'PAY_AMT6': long, 'default payment next month': long]

outputs:
['ID': long, 'default payment next month | threshold=0.3': boolean]

Save processor model.

model_path = "processor"

mlflow.pyfunc.save_model(
path=model_path,
python_model=CCProcessor(),
signature=model_signature,

)

Test MLFlow can load and score the saved model.

model = mlflow.pyfunc.load_model(model_path)
print(model.metadata.get_input_schema())
print(model.metadata.get_output_schema())
model.predict(x)

['ID': long, 'LIMIT_BAL': long, 'SEX': long, 'EDUCATION': long, 'MARRIAGE': long, 'AGE': long, 'PAY_0': long, 'PAY_2': long, 'PAY_3': long, 'PAY_4': long, 'PAY_5': long, 'PAY_6': long, 'BILL_AMT1': long, 'BILL_AMT2': long, 'BILL_AMT3': long, 'BILL_AMT4': long, 'BILL_AMT5': long, 'BILL_AMT6': long, 'PAY_AMT1': long, 'PAY_AMT2': long, 'PAY_AMT3': long, 'PAY_AMT4': long, 'PAY_AMT5': long, 'PAY_AMT6': long, 'default payment next month': long]
['ID': long, 'default payment next month | threshold=0.3': boolean]

ID default payment next month | threshold=0.3
0 1 True
1 2 True
2 3 False
3 4 False
4 5 False
5 6 False
6 7 False
7 8 False
8 9 True
9 10 False

Make archive to upload and deploy using MLOps UI or Python client.

import shutil

zip_path = shutil.make_archive(
"processor_mlflow", "zip", "processor"

)

Scoring

Assumes archive has been deployed on MLOps.

37 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Deployment to be processed Example of unprocessed output.

result = requests.post(
url="https://model.internal.dedicated.h2o.ai/3ae169a7-21a6-419b-bbf2-bce0ef3463bc/model/score",
json=dict(

fields=list(x.columns),
rows=x.fillna("").astype(str).to_dict("split")["data"],

),
headers={"Authorization": f"Bearer j3UyU2PLB6k3tnpYW1CfusDXPgm72mu2kaR2elxL9jA"}

)
result.raise_for_status()
result.json()

{'fields': ['default payment next month.0', 'default payment next month.1'],
'id': '29644d94-69ce-11ed-8dd0-42a220533d6d',
'score': [['0.5026670558588076', '0.4973329441411924'],
['0.5757092185564415', '0.4242907814435585'],
['0.7779584616197291', '0.22204153838027083'],
['0.7571721069431696', '0.24282789305683036'],
['0.8100351192319214', '0.1899648807680786'],
['0.7414997325267836', '0.25850026747321647'],
['0.8639312267025963', '0.13606877329740377'],
['0.7468108781657142', '0.25318912183428577'],
['0.6648249807372442', '0.3351750192627559'],
['0.7785471596551806', '0.22145284034481938']]}

Processing deployment Example of processed output.

requests.get(
"https://model.internal.dedicated.h2o.ai/c51d99b8-1563-440f-9868-7b23353bb402/model/schema"

).json()["schema"]["outputFields"]

[{'name': 'ID', 'dataType': 'Int64'},
{'name': 'default payment next month | threshold=0.3', 'dataType': 'Bool'}]

result = requests.post(
url="https://model.internal.dedicated.h2o.ai/c51d99b8-1563-440f-9868-7b23353bb402/model/score",
json=dict(

fields=list(x.columns),
rows=x.fillna("").astype(str).to_dict("split")["data"],

)
)
result.raise_for_status()
result.json()

{'fields': ['ID', 'default payment next month | threshold=0.3'],
'id': '3ee67d43-5219-48dc-a02f-cea2b4e5c49d',
'score': [['1', 'True'],
['2', 'True'],
['3', 'False'],
['4', 'False'],
['5', 'False'],
['6', 'False'],
['7', 'False'],
['8', 'False'],
['9', 'True'],
['10', 'False']]}

38 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

View deployments
This page explains how to view and manage deployments in H2O MLOps. It covers how to access deployment details,
monitor performance, perform scoring, and carry out common tasks such as downloading logs or deleting deployments.

To view the list of available deployments, click Real-time deployments on the left navigation menu.

Understand the Deployments page
To view details of a specific deployment, click the name of the deployment you want to view.

The Deployment details page is divided into the following three tabs:

• Details
• Endpoints
• Quick scoring

Details

The Details tab provides key information about the deployment, including configuration, status, and advanced settings.

• Deployment name: The name of to the deployment.
• Deployment description: A brief summary of the deployment’s purpose or functionality.
• Deployment type: The deployment type for the deployment (Single model, A/B test, or champion/challenger).
• Status: The current status of the deployment. For more information, see States.
• Deployed model details: Information about the model associated with the deployment:

• Model name: The name of the deployed model.
• Version: The specific version of the model in use.
• Artifact type and runtime: The artifact type and runtime for the deployment.

• Advanced settings: Additional configuration options for the deployment. You can update the following:
• Kubernetes options

• Replicas: The number of static replicas of the deployed model.
• Requests: The amount of resources the deployment requires from Kubernetes.
• Limits: The maximum amount of resources that are available to the deployment.

• Model monitoring: To enable or disable model monitoring, use the Enable Monitoring toggle. When enabled,
scoring data is collected and stored.

• Security
• Level: The security level specified when the deployment was created.
• Passphrase: If you selected the Passphrase (Stored as plain text) option when creating the deployment,

the passphrase can be viewed in the Security Details section. Note that if you select the Passphrase
(Stored hashed) option, the passphrase cannot be viewed.

After updating the advanced settings, click Save changes.
For more information on the advanced settings, see Advanced settings.

39 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Download deployment logs To download deployment logs, click Download Logs in the Details tab.

The logs are downloaded to your device as a ZIP file.

Delete a deployment To delete a deployment, click the Delete button in the Details tab.

States The following is a list of possible states for deployments in MLOps:

• Preparing - The deployment is being prepared for launch
• Launching - The deployment is launching to an environment
• Failed - The deployment failed during preparation or launch
• Healthy - The deployment is alive and healthy
• Unhealthy - Health issues have been detected with the launched deployment
• Terminating - The deployment is terminating
• Pending - The deployment has been created and is awaiting processing
• Stopped - The deployment is scaled down.

Endpoints

From the Endpoints tab, you can view and copy the default deployment URL. If the default scorer endpoint is not
suitable, you can add a custom endpoint with a different path.

Add custom endpoint

1. Click Add custom endpoint.
2. Enter a name for the new endpoint.
3. (Optional) Add a description for the endpoint.
4. Specify the endpoint path.
5. Click Create endpoint.

40 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Scoring with endpoint URL In the Endpoints tab, copy the endpoint URL.

You can use the URL in your own application for sending scoring requests.

Delete an endpoint warning Deleting an endpoint is permanent and can’t be undone.

1. Click delete next to the endpoint.

2. Click Delete to confirm.

Quick scoring

To learn how to perform quick scoring, see Quick scoring.

Missing values
To indicate a field as a missing value for any of the following runtime options, use the corresponding value displayed in the
following table.

Note: The information provided in this section is only guaranteed to work if no changes have been made to the default
missing_values configuration setting in Driverless AI (DAI). If you have changed the missing_values configuration
setting in DAI, contact the H2O support team for assistance.

41 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Runtime Numeric missing value String missing value
Driverless AI MOJO scorer Empty string Empty string
Python Pipeline scorer (MLOps 0.57.3
and earlier)

"1.7976931348623157e+308" Empty string

Python Pipeline scorer (MLOps 0.58.0
and later)

"1.7976931348623157e+308" or
empty string

Empty string

H2O-3 MOJO Empty string Empty string
MLflow/ .pkl file Not supported Empty string

42 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Vertical Pod Autoscaler (VPA) support
Vertical Pod Autoscaler (VPA) is supported in the Deployer. VPA allows dynamic scaling of CPU and memory resources
based on application usage, improving resource efÏciency and optimizing costs.

For more information, see the ofÏcial VPA GitHub README.

Note: For a list of known limitations, see the Known limitations section of the VPA GitHub README.

Configurations
The following configurations provide control over resource usage based on VPA settings.

vpa:
Whether to enable the VPA.
enabled: false
The CPU max threshold for the VPA.
cpuMaxThreshold: 0
The CPU unit for the VPA.
Available units for CPU:
- CORES: For CPU cores
- MILLICORES: For CPU millicores
cpuMaxThresholdUnit: "MILLICORES"
The memory max threshold for the VPA.
memoryMaxThreshold: 0
The memory unit for the VPA.
Available units for memory:
- MIB: For memory in MiB
- GIB: For memory in GiB
memoryMaxThresholdUnit: "MIB"

43 © 2024 H2O.ai, Inc. All rights reserved.

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#intro
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#known-limitations

H2O MLOps Version v1.0.0

Pod Disruption Budget (PDB)
This page provides a detailed overview of the Pod Disruption Budget (PDB) API specification and its integration with
H2O MLOps. A Pod Disruption Budget is a Kubernetes resource that specifies the minimum number of pods that must
remain available during a disruption caused by voluntary actions (like scaling down) or involuntary actions (like node
failures). PDBs help maintain application stability by preventing too many pods from being simultaneously unavailable.
For more information about PDBs, see Disruptions.

PDB API specification
// Represents configuration for Pod Disruption Budget (PDB).
// Only one of the two options; min_available or max_unavailable should be specified.
message PodDisruptionBudgetSpec {
// Only one of these disruption policies can be specified
oneof disruption_policy {
// The minimum number of pods that must be available after the eviction
MinAvailable min_available = 1;
// The maximum number of pods that can be unavailable after the eviction
MaxUnavailable max_unavailable = 2;

}
}

The PodDisruptionBudgetSpec defines the configuration for PDB. It includes a disruption_policy, where users can
specify either min_available or max_unavailable. Only one policy can be specified at a time. The min_available
policy represents the minimum number of pods that must be available after the eviction. The max_unavailable policy
represents the maximum number of pods that can be unavailable after the eviction.

// Represents minimum availability configuration
message MinAvailable {
oneof value {
int32 pods = 1; // Absolute number of pods
int32 percentage = 2; // Percentage of pods

}
}

MinAvailable specifies the minimum availability of configuration.

// Represents maximum unavailability configuration
message MaxUnavailable {
oneof value {
int32 pods = 1; // Absolute number of pods
int32 percentage = 2; // Percentage of pods

}
}

MaxUnavailable specifies the maximum unavailability of configuration.

Helm chart configuration
To enable PDB globally or for specific deployments, configure the Helm chart using the following parameters:

podDisruptionBudget:
-- Whether to enable the PodDisruptionBudget globally.
-- PS: This does not deploy a PDB for each deployment by default,
-- instead it will just give user the ability to set a PDB for each deployment.
-- If enabled, it will be possible to set a PDB for each deployment.
-- If not, it won't be possible to set a PDB per deployment.
-- PS: PDB should not be enabled for a deployment if VPA is enabled for that specific deployment.
enabled: false

The enabled flag determines whether PDB can be configured for deployments. If enabled, users can set specific PDB
configurations for each deployment. PDB should be disabled if Vertical Pod Autoscaler (VPA) is enabled for the deployment.

44 © 2024 H2O.ai, Inc. All rights reserved.

https://kubernetes.io/docs/concepts/workloads/pods/disruptions/

H2O MLOps Version v1.0.0

Understand model scoring
Model scoring is the process of using a deployed model to generate predictions based on input data. In H2O MLOps, once
a model version is deployed, you can send data to the deployment and receive predictions in response.

H2O MLOps provides multiple ways to perform scoring:

• Quick scoring: A UI-based option to test your deployment with sample input data.
• Deployment scorer: A Python client–based option for scoring against deployments.

To learn more about scoring methods and how to use them, see:

• Quick scoring
• Deployment scorer

45 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Quick scoring
Score directly from the UI
To score the deployment directly from the UI, click Score in the Quick scoring tab.

After scoring, the results are displayed in the interface.

Scoring with cURL scoring request
The cURL scoring request is auto-generated based on the scoring configuration.

1. In the Quick scoring tab, copy the sample curl scoring request.

2. Open a Terminal window and paste the sample curl request to view the model scoring information.

46 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Shapley values support
Shapley value support in MLOps requires a model created with H2O-3 or Driverless AI version 1.10 or later, and is
available for both MOJO and Python pipeline artifacts.

The following steps describe how to enable and request Shapley values.

Step 1: Enable Shapley values when deploying a model
For DAI experiments

If the Driverless AI MOJO pipeline artifact type (dai/mojo_pipeline) is selected when deploying a model, several
runtimes that enable support for Shapley values are available. The selected runtime determines the type of Shapley value
you can request in the following step. Depending on the selected runtime option, deploying with Shapley support doubles
or triples the RAM requirements of the runtime.

Note: You can skip this step if you’re using a DAI Python pipeline.

• H2O.ai MOJO scorer with Shapley values for transformed features (mojo_runtime_shapley_transformed):
Generate Shapley values for features or columns that have been transformed by DAI.

• H2O.ai MOJO scorer with Shapley values for all features (mojo_runtime_shapley_all): Generate Shapley
values for either original or transformed features.

• H2O.ai MOJO scorer with Shapley values for original features (mojo_runtime_shapley_original): Gen-
erate Shapley values for features or columns that existed as part of the original dataset or experiment.

For H2O-3 MOJO experiments

If the H2O-3 MOJO artifact type (h2o3/mojo) is selected when deploying a model, only one runtime is available that
enables support for Shapley values: h2o3_mojo_runtime_shapley_transformed.

• H2O-3 MOJO scorer with Shapley values for transformed features
(h2o3_mojo_runtime_shapley_transformed): Generate Shapley values for features or columns transformed during
training.

Note:

• H2O MLOps supports Shapley TRANSFORMED values in H2O-3 for MOJO experiments.
• Shapley values are supported only for the following model types:

• DRF
• GBM
• XGBoost

• Shapley values are not supported for the following models:
• Multinominal classification models
• Binominal models with Binominal Double Trees parameter set
• GLM models

Step 2: Request Shapley values in a curl request
By default, Shapley values aren’t returned in a curl request. To get Shapley values (that is, the Shapley type enabled in
the preceding step), you must include the requestShapleyValueType argument in the curl request and set the value as
either ORIGINAL or TRANSFORMED.

Note:

• The specified value must correlate with the runtime selected in the preceding step.

• The following steps describe how to check which Shapley values have been enabled:

1. Copy the endpoint URL of the deployment.
2. In the endpoint URL, replace /score with /capabilities.
3. Paste the endpoint URL in a browser window. One to three different terms are displayed that indicate

whether the deployment supports Shapley values for original features and/or transformed features: [SCORE,
CONTRIBUTION_ORIGINAL, CONTRIBUTION_TRANSFORMED]

47 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

• To try this using the H2O MLOps Python client, see View scorer capabilities.

ORIGINAL

ORIGINAL enables the ability to generate Shapley values for features or columns that existed as part of the original dataset
or experiment.

Example usage:

"requestShapleyValueType": "ORIGINAL"

TRANSFORMED

TRANSFORMED enables the ability to generate Shapley values for features or columns that have been transformed by DAI.

Example usage:

"requestShapleyValueType": "TRANSFORMED"

Note:

• By default, this value is set to NONE, which is the equivalent of not providing the requestShapleyValueType argument
in the curl request.

• To try this using the H2O MLOps Python client, see Shapley values.

The following is a sample curl request and response with Shapley values enabled for original features:

curl -X POST -H "Content-Type: application/json" -d @- <SCORING_ENDPOINT_URL> << EOF
{
"fields": [

"LIMIT_BAL",
"SEX",
"EDUCATION",
"MARRIAGE",
"AGE",
"PAY_0",
"PAY_2",
"PAY_3",
"PAY_4",
"PAY_5",
"PAY_6",
"BILL_AMT1",
"BILL_AMT2",
"BILL_AMT3",
"BILL_AMT4",
"BILL_AMT5",
"BILL_AMT6",
"PAY_AMT2",
"PAY_AMT3",
"PAY_AMT4",
"PAY_AMT5",
"PAY_AMT6"

],
"rows": [

[
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",

48 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0"
]

], "requestShapleyValueType": "ORIGINAL"
}
EOF

{
"featureShapleyContributions":
{

"contributionGroups":
[

{
"contributions":
[

[
"0.3031580540597976",
"0.05037104158009451",
"0.01197491002508829",
"-0.09613404645427222",
"0.03349942127192829",
"-0.19629869420775475",
"-0.05457586577961132",
"-0.016488709633310006",
"0.03022179422131117",
"-0.010334700480366232",
"-0.001831092307318766",
"0.24078515169214335",
"0.059130207887999234",
"-0.03856367964221913",
"-4.1371086615778267E-4",
"0.02549452684520287",
"-0.012600605263304759",
"0.17373018794999764",
"0.19368473683713824",
"0.1887846519524733",
"0.08455862402217218",
"0.04817053716929957",
"-1.4823175495435195"

]
]

}
],
"features":
[

"contrib_LIMIT_BAL",
"contrib_SEX",

49 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

"contrib_EDUCATION",
"contrib_MARRIAGE",
"contrib_AGE",
"contrib_PAY_0",
"contrib_PAY_2",
"contrib_PAY_3",
"contrib_PAY_4",
"contrib_PAY_5",
"contrib_PAY_6",
"contrib_BILL_AMT1",
"contrib_BILL_AMT2",
"contrib_BILL_AMT3",
"contrib_BILL_AMT4",
"contrib_BILL_AMT5",
"contrib_BILL_AMT6",
"contrib_PAY_AMT2",
"contrib_PAY_AMT3",
"contrib_PAY_AMT4",
"contrib_PAY_AMT5",
"contrib_PAY_AMT6",
"contrib_bias"

]
},
"fields":
[

"default payment next month.0",
"default payment next month.1"

],
"id": "f0395bc4-47d0-11ec-b7eb-fad6d6e23f65",
"score":
[

[
"0.6144353",
"0.38556466"

]
]

}

50 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Test Time Augmentation (TTA) support
Driverless AI supports rolling-window-based predictions for time series experiments using Test Time Augmentation (TTA).
TTA is only available for Python Scoring Pipeline artifacts. This page describes support for TTA in H2O MLOps.

Step 1: Enable TTA when deploying a model
If the Driverless AI Python scoring pipeline artifact type is selected when deploying a model, Test Time Augmentation
will automatically be enabled for capable models.

Step 2: Check if the deployment has TTA support in a curl request
The following is a sample curl request and response to check depoyment capabilities of a Test Time Augmentation enabled
deployment:

curl -X GET https://<SCORER_API_BASE_URL>/model/capabilities

["SCORE","CONTRIBUTION_ORIGINAL","CONTRIBUTION_TRANSFORMED","TEST_TIME_AUGMENTATION"]

Note: TEST_TIME_AUGMENTATION must be present in the cpabilities response for Test Time Augmentation scoring to work.

To try this using H2O MLOps Python client, see View scorer capabilities.

Step 3: Score in a curl request
TTA requires passing known historical target values in the request.

The following is a sample curl scoring request and response that will trigger TTA (in this example we are forecasting
weekly sales):

curl -X POST -H "Content-Type: application/json" -d @- <SCORING_ENDPOINT_URL> << EOF
{
"fields": [

"Store",
"Dept",
"Date",
"IsHoliday",
"Weekly_Sales"

],
"rows": [

["1", "1", "2011-06-24", "0", "15682.81"],
["1", "1", "2011-07-01", "0", "15363.5"],
["1", "1", "2011-07-08", "0", "16148.87"],
["1", "1", "2011-07-15", "0", "15654.85"],
["1", "1", "2011-07-22", "0", "15766.6"],
... <intermediate rows omitted> ...
["1", "1", "2012-09-28", "0", "18947.81"],
["1", "1", "2012-10-05", "0", "21904.47"],
["1", "1", "2012-10-12", "0", "22764.01"],
["1", "1", "2012-10-19", "0", "24185.27"],
["1", "1", "2012-10-26", "0", "27390.81"],
["1", "1", "2012-11-02", "0", ""],
["1", "1", "2012-11-09", "0", ""]

], "includeFieldsInOutput": ["Store", "Dept", "Date"]
}
EOF

{
"fields":
[

"Weekly_Sales",
"Weekly_Sales.lower",

51 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

"Weekly_Sales.upper",
"Store",
"Dept",
"Date",

],
"id": "70e97f86-133e-11ed-9b13-9e9aacfaa41c",
"score": [

["15850.026", "-4002.4613906250015", "34435.428949218745", "1", "1", "2011-06-24"],
["16170.747", "-3681.7406875000015", "34756.149652343745", "1", "1", "2011-07-01"],
["15866.074", "-3986.4135390625015", "34451.476800781245", "1", "1", "2011-07-08"],
["16254.93", "-3597.5580703125015", "34840.332269531245", "1", "1", "2011-07-15"],
["15990.216", "-3862.2719375000015", "34575.618402343745", "1", "1", "2011-07-22"],
... <intermediate rows omitted> ...
["18941.385", "-911.1029921875015", "37526.787347656245", "1", "1", "2012-09-28"],
["18942.018", "-910.4701796875015", "37527.420160156245", "1", "1", "2012-10-05"],
["21030.857", "1178.3696640624985", "39616.260003906245", "1", "1", "2012-10-12"],
["21969.998", "2117.5102890624985", "40555.400628906245", "1", "1", "2012-10-19"],
["23745.594", "3893.1059921874985", "42330.996332031245", "1", "1", "2012-10-26"],
["26146.97", "6294.4829453124985", "44732.373285156245", "1", "1", "2012-11-02"],
["13077.371", "-6775.1166640625015", "31662.773675781245", "1", "1", "2012-11-09"]

]
}

Note: In the preceding example, the last two rows contain the predictions of interest. The rest of the rows also have
predictions (rather than the input value) and can be compared against the known target values to evaluate model accuracy.

52 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Prediction intervals support
To enable support for prediction intervals in H2O MLOps, set requestPredictionIntervals parameter to true. Note
that if prediction intervals are not supported by the model or not returned for some reason, H2O MLOps will either leave
the field empty or return an error response. This mechanism ensures that you are aware when prediction intervals are not
available.

Once enabled, the prediction intervals are returned as an array. For each prediction, a lower and upper bound are returned.

Note: Prediction interval support is currently only available for regression models in all MOJO runtimes and the Driverless
AI scoring pipeline runtime.

Step 1: Check if the deployment has requestPredictionIntervals support in a curl request
Use the /capabilities endpoint to confirm that the model supports prediction intervals.

curl -X GET https://<DEPLOYMENT_URL>/model/capabilities

["SCORE_PREDICTION_INTERVAL","SCORE","CONTRIBUTION_ORIGINAL","CONTRIBUTION_TRANSFORMED"]

The SCORE_PREDICTION_INTERVAL capability indicates that prediction intervals are supported.

To try this using H2O MLOps Python client, see View scorer capabilities.

Step 2: Make a prediction with requestPredictionIntervals enabled
To request prediction intervals using the H2O MLOps Python client, see Prediction intervals.

Sample output:

{'fields': ['score'],
'id': '1b0488b6-ee91-11ed-a05d-4ab989c17db4',
'predictionIntervals': {'fields': ['score.lower',

'score.upper'],
'rows': [['55524.044704861124', '371673.57907986105']]},
'score': [['200005.90798611112']]}

53 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

H2O MLOps Scoring REST API: OpenAPI specification file
The H2O MLOps OpenAPI specification file outlines the structure and functionality of the H2O MLOps Scoring
REST API, detailing available endpoints, request and response formats, and authentication requirements.

• OpenAPI specification: Access the specification in YAML format:

• Download OpenAPI Spec (YAML)

54 © 2024 H2O.ai, Inc. All rights reserved.

rest_api_spec_mlops.yaml

H2O MLOps Version v1.0.0

Model monitoring
H2O MLOps model monitoring involves observing the performance and behavior of deployed models to ensure they
continue to operate effectively and to identify issues such as model drift.

This guide explains how to configure model monitoring during deployment, analyze aggregated data, and identify model
drift. Follow the steps below to set up and use model monitoring in H2O MLOps.

Model monitoring with the UI
Step 1: Enable model monitoring

To enable model monitoring for your deployment:

1. In the left navigation panel, click Real-time deployments.

2. Click Create deployment.

3. On the Create new deployment page, click Advanced settings.

4. Toggle Enable monitoring to Yes.

Step 2: Configure and deploy

During model deployment, configure monitoring to collect and analyze data.

1. If Kafka is available in your environment, provide a pre-created Kafka topic where raw data will be sent.
For more information, see Raw data export to Kafka.

55 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

2. Select the columns you want to monitor.

3. Provide baseline data for comparison:

• Numerical features:

• Categorical features:

56 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

4. Click Deploy.

Step 3: Start scoring

Once the deployment is Healthy, you can begin scoring.

1. In the left navigation panel, click Real-time deployments.

2. Select the deployment you created.

3. Go to the Quick scoring tab.

4. Click Score.

Step 4: View aggregated data

To view the scoring aggregates for each monitored column:

1. After scoring completes, go to the Monitoring tab.

57 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

2. Wait 3–5 minutes to see data under Scoring aggregates.

Step 5: Analyze data in the monitoring UI

To view and analyze model drift:

1. Click View in monitoring UI.

2. The Superset UI opens.

3. From the SQL drop-down, select SQL Lab.

58 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

4. Enter the drift query:
Example: sql WITH time_series AS (-- Get all unique timestamps for the series
SELECT DISTINCT "timestamp" FROM <TABLE_NAME> WHERE NOT is_baseline AND column_name
= <FEATURE_NAME> ORDER BY "timestamp"), baseline AS (-- Get the baseline
(expected) data SELECT unnest(bin_counts) as count FROM <TABLE_NAME> WHERE
is_baseline AND column_name = <FEATURE_NAME>), baseline_sum AS (-- Calculate sum
of baseline counts SELECT sum(count) as total FROM baseline), baseline_props AS (
-- Calculate baseline proportions SELECT count / total as prop, row_number()
OVER () as rn FROM baseline, baseline_sum), actual_data AS (-- Get actual data
for each timestamp SELECT "timestamp", unnest(bin_counts) as
count, row_number() OVER (PARTITION BY "timestamp") as rn FROM <TABLE_NAME> WHERE
NOT is_baseline AND column_name = <FEATURE_NAME>), actual_sums AS (-- Calculate
sums for each timestamp SELECT "timestamp", sum(count) as total FROM actual_data
GROUP BY "timestamp"), actual_props AS (-- Calculate proportions for actual data
SELECT a."timestamp", a.count / s.total as prop, a.rn FROM actual_data a JOIN
actual_sums s ON a."timestamp" = s."timestamp" WHERE s.total >= 0 -- Implementing the
Python None return for sum < 200), drift_calc AS (-- Calculate absolute
differences and sum them SELECT a."timestamp", sum(abs(a.prop - b.prop)) / 2 as
drift_score FROM actual_props a JOIN baseline_props b ON a.rn = b.rn GROUP BY
a."timestamp") -- Final result with timestamps and drift scores SELECT "timestamp",
drift_score FROM drift_calc ORDER BY "timestamp";

5. To save the result as a dataset, go to the Save drop-down and select Save dataset.

59 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

6. To convert it into a chart and add it to a dashboard:

1. Go to Charts and customize the chart.

2. Click Save, and add it to a dashboard.

60 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

3. Go to Dashboards and select the one you want to view.

You can explore more advanced dashboards for deeper insights.

Configure model monitoring with the Python client
To learn how to configure monitoring for your deployment using the H2O MLOps Python client, see Monitoring setup.

61 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Raw data export to Kafka
Monitoring supports exporting raw scoring data to Kafka. This feature allows users to process scoring data in ways
required by their internal regulations. Request and response data from scoring operations can be sent to a specified Kafka
topic for downstream processing, auditing, or debugging. This feature is enabled by the MLOPs administrator.

During model deployment with monitoring enabled, scoring data and response data are sent to a default topic configured
by the MLOPs administrator. Users can optionally specify a custom Kafka topic where the data are sent for this particular
deployment. This allows separating data streams per deployment for improved observability. This configuration has no
effect in case the Kafka intgration is disabled by the admonistrator.

Note: The custom Kafka topic must exist before deploying the model. Monitoring will not attempt to create the topic
automatically.

Once configured, the monitoring captures raw request and response data from scoring operations and forwards it to the
configured Kafka topic (global or deployment-specific).

Common use cases for exporting raw data to Kafka include:

• Debugging and inspecting raw scoring payloads
• Auditing input/output for compliance
• Real-time analytics via stream processing systems

62 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Batch scoring
Batch scoring is the process of making predictions on a large set of data all at once, instead of one-by-one in real time.
This feature supports usage through both the UI and H2O MLOps Python client.

Batch scoring jobs in H2O MLOps create a dedicated Kubernetes runtime that reads data from an input source and stores
the predicted results in an output location.

To run a batch scoring job, you must define the source of the input data and the location (sink) for the scored output.

H2O MLOps supports the following source and sink types:

• Azure Blob Storage
• Amazon S3
• Google Cloud Storage (GCS)
• MinIO
• JDBC

Note:

• Supported input formats: JDBC tables, CSV files with and without headers, and JSON files.
• Supported output formats: JDBC tables, CSV files without headers, and JSON files.

Batch scoring with the UI
This section describes how to start a batch scoring job using the H2O MLOps UI.

To batch score a model using the UI, follow these steps:

1. On the left navigation bar, click Batch scoring jobs.

2. Click Start new job.

3. On the Start new job page, enter a name for the batch scoring job in the Job name field.

4. Select the model from the Model drop-down menu.

5. Choose the artifact type and runtime from the Artifact type and runtime drop-down menu.

6. Under Kubernetes options, configure Kubernetes options, such as the number of replicas and resource requests
and limits.

7. Under Advanced settings, configure the batch size.

8. Specify the source and sink configuration.

Select the appropriate spec type (for example, S3 Spec) from the Source spec drop-down menu and fill out the
configuration fields.

Source spec

Note: The MinIO specification uses the same configuration fields as the S3 specification. To select MinIO as the source
spec type, choose S3 spec from the source spec drop-down menu.

S3 spec

63 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

For S3 Spec, provide the following details:

• accessKeyID (required): The unique identifier for AWS authentication. Not required for public S3 buckets.
• secretAccessKey (required): The private password for AWS authentication. Not required for public S3

buckets.
• sessionToken: The temporary security token for time-limited access to AWS resources.
• pathStyle: Select this option to enable path-style URL construction for the S3 bucket.
• region (required): The AWS geographical region where resources or services will be accessed.
• endpoint: The custom URL to override default AWS service endpoint for specialized configurations.
• partSize: The size of each partition in bytes for reading data.

Azure Blob Storage spec

For Azure Blob Storage spec, provide the following details:

• accountKey: The Azure storage account key. or

• sasToken: The shared access signature (SAS) token for accessing the storage account. Note:

• Either accountKey or sasToken is required to authenticate the source. You don’t need to provide both.

• If you use a sasToken, make sure it includes read, write, and list permissions.

• containerName (required): The name of the blob storage container.

• partitionSize: The size of each partition in bytes for reading data.

GCS spec

For GCS spec, provide the following details:

• credentials (required): The service account JSON credentials.
• projectID (required): The Google Cloud Project ID.
• endpoint: The custom endpoint URL.
• partSize: The size of each partition in bytes for reading data.

JDBC spec

For JDBC spec, provide the following details:

• secretParams: The set of key-value pairs that contain sensitive parameters (e.g., passwords) used to dynami-
cally construct the JDBC connection string. Each key and value must be a string. For example, you can use
postgres://user:{{pass}}, where pass is defined in secretParams.

• driver (required): The JDBC driver to use. Supported values include mysql, postgres, mssql, and oracle.

• table (required): The table to read from. You can also use any valid SQL expression for a FROM clause, such as a
subquery enclosed in parentheses.

• numPartitions: The number of partitions to divide the table into for parallel reads. Required if partitioning is
enabled. This setting determines the level of read parallelism.

• lowerBound: The lower boundary value used to compute partition strides. It is not used to filter rows and must
match the data type of the partitionColumn.

• upperBound: The upper boundary value used to compute partition strides. Like lowerBound, this is only used for
partitioning and must match the data type of the partitionColumn.

• partitionColumn: The column used to determine how the data is partitioned. This must be a numeric, date, or
timestamp column.

• Source MIME type (required): The MIME type (media type) of the input data. Select an appropriate option
from the drop-down menu.

• Source location (required): The path to the input data source.

Now, select the appropriate spec type (for example, S3 Spec) from the Sink spec drop-down menu and fill out the
configuration fields. ### Sink spec

Note: The MinIO specification uses the same configuration fields as the S3 specification. To select MinIO as the sink spec
type, choose S3 spec from the sink spec drop-down menu.

64 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

S3 spec

For S3 Spec, provide the following details:

• accessKeyID (required): The unique identifier for AWS authentication.
• secretAccessKey (required): The private password for AWS authentication.
• sessionToken: The temporary security token for time-limited access to AWS resources.
• pathStyle: Select this option to enable path-style URL construction for the S3 bucket.
• region (required): The AWS geographical region where resources or services will be accessed.
• endpoint: The custom URL to override default AWS service endpoint for specialized configurations.
• writeConcurrency: The number of concurrent write operations.

Azure Blob Storage spec

For Azure Blob Storage spec, provide the following details:

• accountKey: The Azure storage account key. or

• sasToken: The shared access signature (SAS) token for accessing the storage account. Note:

• Either accountKey or sasToken is required to authenticate the sink. You don’t need to provide both.

• If you use a sasToken, make sure it includes read, write, and list permissions.

• containerName (required): The name of the blob storage container.

• writeConcurrency: The number of concurrent write operations allowed.

GCS spec

For GCS spec, provide the following details:

• credentials (required): The service account JSON credentials.
• projectID (required): The Google Cloud Project ID.
• endpoint: The custom endpoint URL.
• writeConcurrency: The number of concurrent write operations.

JDBC spec

For JDBC spec, provide the following details:

• secretParams: The set of key-value pairs that contain sensitive parameters (e.g., passwords) used to dynami-
cally construct the JDBC connection string. Each key and value must be a string. For example, you can use
postgres://user:{{pass}}, where pass is defined in secretParams.

• driver (required): The JDBC driver to use. Supported values include mysql, postgres, mssql, and oracle.

• table (required): The JDBC table that should be write into.

• Sink MIME type (required): The MIME type (media type) of the output data. Select an appropriate option
from the drop-down menu.

• Sink location (required): The destination path where the output data will be written.

9. After filling out the configuration fields, click Start job to initiate the batch scoring job.

Batch scoring with Python client
To learn how to perform batch scoring using the H2O MLOps Python client, see the Batch scoring example in the Python
client examples section.

65 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

H2O MLOps Python client
The H2O MLOps Python client lets you use the H2O MLOps API from your Python application. This guide describes
how you can install the H2O MLOps Python client, connect to H2O MLOps and carry out tasks using the Python client.
After successful installation, you can interact with the H2O MLOps API via the H2O MLOPs gRPC Gateway. For more
information, see H2O MLOps gRPC Gateway.

The H2O MLOps Python client documentatin is organized into the following sections:

• Installation >The Python client can be easily installed to get started with H2O MLOps programmatically. Follow
our installation guide to set up the client in your environment and prepare for integration with the platform.

• Getting started >The Python client makes it easy to connect to H2O MLOps, deploy models, and score data from
your Python code. Follow our quickstart guide for an end-to-end workflow to create a workspace, register a model,
deploy it, and score against the deployment.

• Examples

This section provides code examples for performing common operations using the H2O MLOps Python client. Each
example shows how to perform specific tasks in your workflow.

• Connect to H2O MLOps >Learn recommended methods to establish a secure connection to the H2O MLOps
using the Python client.

• Manage Workspaces > Discover how to create, manage, and organize your workspaces in H2O MLOps using
the Python client with better collaboration and resource management.

• Manage Experiments >Track and manage your machine learning experiments using H2O MLOps Python client,
including experiment tags. It also describes experiment properties and how to compute Kubernetes options.

• Handle artifacts >Learn how to use the Python client to add, retrieve, update, delete, or convert artifacts to
strings or dictionaries for an H2O MLOps entity.

• Manage Models >Explore comprehensive model management capabilities, including versioning through code.

• Deploy Models

• Configure deployments > Explore the available options for configuring deployments using the H2O MLOps
Python client.

• Manage deployments > Learn how to create, view, update, and delete deployments, as well as how to view
logs and configure endpoints using the H2O MLOps Python client.

• Deployment scorer > Learn how to use the H2O MLOps Python client to score against deployments.

• Batch scoring >Implement efÏcient batch prediction workflows for processing large volumes of data with your
deployed models.

• Monitoring setup >Configure comprehensive monitoring for your deployed models to track performance, data
drift, and operational metrics.

66 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Installation
To install the H2O MLOps Python client, run the following command:

pip install h2o-mlops

Note: The minimum Python client version required for this MLOps release is v1.4.0.

To install a specific version of the H2O MLOps Python client, run:

pip install h2o-mlops==x.y.z

To install the H2O MLOps Python client with a minimum version requirement, run:

pip install h2o-mlops>=x.y.z

Note: The minimum Python version required for the latest client is Python 3.9.

Version compatibility
note Python Client version compatibility

Starting with H2O MLOps v1.0.0, use Python client version v1.4.0 or later. Newer Python client versions are not backward
compatible with MLOps versions earlier than v1.0.0.

From v1.0.0 onwards, you can use the latest available Python client, as backward compatibility is maintained. However,
upgrading or downgrading may require minor code changes due to potential breaking changes. For details, see the migration
guide.

For H2O MLOps versions from v0.66.1 to v0.70.5, use Python client version v1.3.3.

For versions earlier than v0.66.1, it is recommended to use the corresponding client version that matches the H2O MLOps
release. For example, client version 0.62.1a5 is intended for use with H2O MLOps version 0.62.1. Using a client with a
different version of H2O MLOps may lead to compatibility issues.

67 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Getting started
This page helps you get started with the H2O MLOps Python client by walking through a complete quickstart workflow,
from connecting to H2O MLOps, to deploying a model, and scoring data against the deployment.

H2O MLOps enables teams to manage the lifecycle of machine learning models, including registration, deployment,
monitoring, and scoring. The Python client allows you to perform these tasks directly from your Python code.

Follow these steps to connect to your H2O MLOps environment, create a workspace, register a model, deploy it, and score
data against the deployment.

Prerequisites
Before you begin, install the H2O MLOps Python client. For more information, see Installation.

Step 1: Import the required packages
import h2o_mlops
import h2o_mlops.options as options
import h2o_mlops.types as types

Step 2: Initialize the H2O MLOps client
Connect to H2O MLOps using your H2O Cloud URL, refresh token, and SSL certificate (if required):

mlops = h2o_mlops.Client(
h2o_cloud_url=<H2O_CLOUD_URL>,
refresh_token=<REFRESH_TOKEN>,
ssl_cacert="/path/to/your/ca_certificate.pem",

)

Note: Replace placeholders with your actual credentials and file paths. If SSL is not needed, you can omit ssl_cacert.

Step 3: Create a workspace
Workspaces are containers that group related models, deployments, and artifacts. Create a new one:

workspace = mlops.workspaces.create(name="my-workspace")

Step 4: Register an experiment as a model version
Register an existing experiment artifact as a model version to make it available for deployment:

model = workspace.models.register(
experiment="/path/to/my_experiment_artifact.zip",
name="my-experiment",

)

Make sure the path points to a valid model artifact on your local machine.

Step 5: Deploy the model
Deploy the registered model as an API endpoint using a supported scoring runtime:

deployment = workspace.deployments.create(
name="my-deployment",
composition_options=options.CompositionOptions(

model=model,
scoring_runtime=model.experiment().scoring_runtimes[0]

),
security_options=options.SecurityOptions(

security_type=types.SecurityType.DISABLED,
),

)

68 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Note: Make sure to use the index that matches the scoring runtime you want from
model.experiment().scoring_runtimes.

Step 6: Wait for the deployment to become healthy
Deployment may take a few seconds. Use the following to wait until it’s ready:

deployment.wait_for_healthy()

Step 7: Score data against the deployment
Once the deployment is healthy, you can send data to it for scoring:

deployment.scorer.score(
payload={

"fields": [
"Origin", "Dest", "fDayofMonth", "fYear", "UniqueCarrier", "fDayOfWeek", "fMonth", "IsDepDelayed",

],
"rows": [

["text", "text", "text", "text", "text", "text", "text", "text"],
["text", "text", "text", "text", "text", "text", "text", "text"],
["text", "text", "text", "text", "text", "text", "text", "text"],

]
},

)

The output contains predictions for the provided input rows:

{'id': '2afe0ab6-db1c-4ecc-abb2-747340b3b8dc',
'fields': ['Distance'],
'score': [['713.7770420135266'],
['713.7770420135266'],
['713.7770420135266']]}

Explore more examples
This Getting started page covered the basics of connecting to H2O MLOps, deploying a model, and scoring data using
the H2O MLOps Python client.

To learn more, see the Examples section, which includes code examples for the following operations:

• Connect to H2O MLOps
• Manage Workspaces
• Manage Experiments
• Handle artifacts
• Manage Models
• Configure deployments
• Manage deployments
• Deployment scorer
• Batch scoring
• Monitoring setup

69 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Connect to H2O MLOps
This page describes recommended methods for connecting to H2O MLOps with the Python Client. Select one of the
following methods based on how your H2O Cloud is set up and where you are connecting from.

1. Connect with SSL verification enabled
2. Connect with private certificate
3. Connect with SSL verification disabled
4. Connect from H2O Notebook Labs

Prerequisites
Before you connect to H2O MLOps, make sure you complete the following steps.

1. Import the necessary Python packages. For instructions, see Step 1: Import the required packages.

2. Gather required values. You need two values to connect:

• h2o_cloud_url: The URL used to access the H2O Cloud homepage.
• refresh_token: Obtain the refresh_token from the H2O Cloud UI. For instructions, see Get the platform

token.

The H2O MLOps Python Client also supports the following optional SSL settings:

• verify_ssl: If set to True (the default value), the client will check that the server’s SSL certificate is valid.
• ssl_cacert: A path to a custom CA (Certificate Authority) certificate or bundle in .pem, or .crt format.

The Python client will also check environment variables and automatically use them if no arguments are supplied:

• h2o_cloud_url: H2O_CLOUD_ENVIRONMENT
• refresh_token: H2O_CLOUD_CLIENT_PLATFORM_TOKEN
• ssl_cacert: MLOPS_AUTH_CA_FILE_OVERRIDE

You can connect to the H2O MLOps client with SSL verification either enabled or disabled. Use one of the following
examples based on your SSL configuration preferences.

Connect with SSL verification enabled
Connection with SSL verification is a default mode for MLOPs Python Client.

import h2o_mlops

mlops = h2o_mlops.Client(
h2o_cloud_url=...,
refresh_token=...,

)

Connect with private certificate
To connect to an environment that uses a private certificate, please follow the following:

import h2o_mlops

mlops = h2o_mlops.Client(
h2o_cloud_url=...,
refresh_token=...,
ssl_cacert="/path/to/your/ca_certificate.pem",

)

Connect with SSL verification disabled
import h2o_mlops

mlops = h2o_mlops.Client(
h2o_cloud_url=...,

70 © 2024 H2O.ai, Inc. All rights reserved.

https://docs.h2o.ai/haic-documentation/guide/general/using-platform-token
https://docs.h2o.ai/haic-documentation/guide/general/using-platform-token

H2O MLOps Version v1.0.0

refresh_token=...,
verify_ssl=False,

)

Connect from H2O Notebook Labs
H2O Notebook Labs in the H2O Cloud will detect your user and automatically connect to H2O MLOps. For more
information on H2O Notebook Labs, see the H2O Notebook Labs documentation.

Input:

import h2o_mlops

mlops = h2o_mlops.Client()

Verify the connection
After establishing the connection, verify it by checking your user information.

Input:

mlops.users.get_me()

Output:

<class 'h2o_mlops._users.MLOpsUser(
uid='4c4eb198-bcbc-4442-91f6-a27deb53e9c1',
username='user',
name='User',
email='user@h2o.ai',

)'>

Advanced configurations
Configurable timeout settings

You can configure the following timeout parameters when you connect to H2O MLOps:

• global_request_timeout: Optional[float | Tuple[float, float]] = None – Specify the timeout for general
API requests in seconds.

• file_transfer_timeout: Optional[float | Tuple[float, float]] = None – Specify the timeout for file upload
and download requests in seconds.

If a single number is provided, it represents the total timeout for the respective operation. Alternatively, a pair (tuple) of
(connection, read) timeouts can be specified.

Example:

import h2o_mlops

mlops = h2o_mlops.Client(
h2o_cloud_url=...,
refresh_token=...,
global_request_timeout=(5, 15),
file_transfer_timeout=40,

)

71 © 2024 H2O.ai, Inc. All rights reserved.

https://docs.h2o.ai/notebook/get-started/overview

H2O MLOps Version v1.0.0

Manage Workspaces
This guide explains how to create, view, update, and delete workspaces in H2O using the H2O MLOps Python client.

To learn more about workspaces, see Workspaces.

Prerequisites
Before you begin,

• Connect to H2O MLOps. For instructions, see Connect to H2O MLOps.

Create a workspace
This section describes how to create a new workspace in H2O using the H2O MLOps Python client.

Create a new workspace using the create() method.

workspace = mlops.workspaces.create(name="my-workspace", description="my-workspace")

Parameters:

• name: The name of the workspace.
• description: A short description of the workspace.

View workspaces
This section describes how to view existing workspaces in H2O using the H2O MLOps Python client.

Count workspaces

Get the total number of workspaces:

Input:

mlops.workspaces.count()

Output:

4

List all workspaces

List all existing workspaces using the list() method.

Input:

workspaces = mlops.workspaces.list()
workspaces

This returns a list of all available workspaces.

Output: >python > | name | uid >---+--------------------
+-------------------------------------- > 0 | my-workspace | 7bdc6a96-804e-452a-b7dd-
8afc1968b3d9 > 1 | dummy | 559140a8-34de-48f1-ab55-27d805d2f197 > 2 | Personal
Workspace | 92fb7ec4-a011-46b1-bff4-4669d9ab17ee > 3 | Appstore Workspace | appstore >

Note:

• The output of list() method is displayed in a neatly formatted view. By default, only the first 50 rows are displayed
to keep the output concise and manageable.

• Calling len(workspaces) returns the total number of rows it contains, not just the number currently displayed.

• To customize the number of rows displayed, you can call the show() method with the n argument. This allows more
rows to be shown when needed. For example: >python >workspaces.show(n=100) > This will display
up to 100 workspaces.

• The workspaces can be iterated over, as it is designed to behave like an iterator.

72 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

List workspace aggregates

Use the aggregates() method to view workspaces along with the number of models, model versions, and attached
experiments.

Input:

mlops.workspaces.aggregates()

Output:

| name | versions | models | experiments | uid
---+--------------------+------------+----------+---------------+--------------------------------------
0 | my-workspace | 0 | 0 | 0 | 7bdc6a96-804e-452a-b7dd-8afc1968b3d9
1 | dummy | 2 | 1 | 2 | 559140a8-34de-48f1-ab55-27d805d2f197
2 | Personal Workspace | 0 | 0 | 0 | 92fb7ec4-a011-46b1-bff4-4669d9ab17ee

Filter workspaces

Use the list() method with key-value arguments to filter the workspaces.

Input:

mlops.workspaces.list(name="my-workspace")

This returns a list of matching workspaces as a table.

Output: >python > | name | uid >---+--------------+--------------------------------------
> 0 | my-workspace | 7bdc6a96-804e-452a-b7dd-8afc1968b3d9 >

Retrieve a workspace

To retrieve a specific workspace, use the get() method with the workspace UID.

Input:

workspace = mlops.workspaces.get(uid="7bdc6a96-804e-452a-b7dd-8afc1968b3d9")
workspace

Note: You can also retrieve a specific workspace from the list returned by list() using indexing.
For example, workspace = mlops.workspaces.list(key=value)[index]. The key and value arguments are optional.

Output:

<class 'h2o_mlops._workspaces.Workspace(
uid='7bdc6a96-804e-452a-b7dd-8afc1968b3d9',
name='my-workspace',
description='my-workspace',
creator_uid='4c4eb198-bcbc-4442-91f6-a27deb53e9c1',
created_time=datetime.datetime(2025, 7, 17, 15, 43, 0, 583925, tzinfo=tzutc()),
last_modified_time=None,

)'>

Workspace properties
A workspace has the following main properties:

• uid: The unique identifier of the workspace.
• name: The name of the workspace.
• description: A description of the workspace.
• creator: The user who created the workspace.
• created_time: The timestamp when the workspace was created.
• last_modified_time: The timestamp of the last modification.
• last_modified_by: The user who made the last modification.

73 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Aggregate

You can use workspace.aggregate to retrieve the number of:

• Versions
• Models
• Experiments

Input:

workspace.aggregate

Output:

| entity | count
---+-------------+---------
0 | versions | 0
1 | models | 0
2 | experiments | 0

Update a workspace
You can update only the name and description fields of a workspace.

Make sure to retrieve the workspace instance as described in Retrieve a workspace before proceeding.

Input:

workspace.update(name="my-new-workspace")
workspace

Output:

<class 'h2o_mlops._workspaces.Workspace(
uid='7bdc6a96-804e-452a-b7dd-8afc1968b3d9',
name='my-new-workspace',
description='my-workspace',
creator_uid='4c4eb198-bcbc-4442-91f6-a27deb53e9c1',
created_time=datetime.datetime(2025, 7, 17, 15, 43, 0, 583925, tzinfo=tzutc()),
last_modified_time=datetime.datetime(2025, 7, 17, 15, 43, 4, 696432, tzinfo=tzutc()),

)'>

Delete a workspace
danger warning Deleting a workspace also deletes all entities within it.

To delete a workspace, use the delete() method:

Input:

workspace.delete()

74 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Manage Experiments
This page explains how to create, view, update, and delete experiments; add comments; and manage experiment tags in
H2O MLOps using the Python client. It also describes experiment properties and how to compute Kubernetes options.

To learn more about experiments, see Experiments.

Prerequisites
Before you begin, 1. Connect to H2O MLOps. For instructions, see Connect to H2O MLOps. 2. Create a workspace. For
steps, see Create a workspace.

Create an experiment
Use the create() method to create a new experiment in a workspace:

experiment = workspace.experiments.create(
data="/path/test.zip",
name="my-experiment",
description="Test experiment",

)

Note: You can link or unlink an H2O Driverless AI (DAI) experiment, or an existing DAI or H2O MLOps experiment in
storage, to a workspace.

Link an experiment by UID:

workspace.experiments.link(uid="your-experiment-uid")

Unlink an experiment:

workspace.experiments.unlink(uid="your-experiment-uid")

View experiments
Count experiments

Get the total number of experiments in a workspace:

Input:

workspace.experiments.count()

Output:

1

List experiments

List all experiments in a workspace:

Input:

experiments = workspace.experiments.list()
experiments

Output:

| name | uid | tags
---+---------------+--------------------------------------+--------
0 | my-experiment | d9a47c99-c66c-4ff9-b2b6-30faf5f413ef |

Note:

• The output of list() method is displayed in a neatly formatted view. By default, only the first 50 rows are displayed
to keep the output concise and manageable.

• Calling len(experiments) returns the total number of rows it contains, not just the number currently displayed.

75 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

• To customize the number of rows displayed, you can call the show() method with the n argument. This allows more
rows to be shown when needed. For example: >python >experiments.show(n=100) > This will display
up to 100 experiments.

• The experiments can be iterated over, as it is designed to behave like an iterator.

Filter experiments

Use the list() method with key-value arguments to filter the experiments.

Input:

workspace.experiments.list(name="my-experiment")

This returns a list of matching experiments as a table.

Output:

| name | uid | tags
---+----------------------+--------------------------------------+--------
0 | my-experiment | d9a47c99-c66c-4ff9-b2b6-30faf5f413ef |

Retrieve an experiment

Retrieve a specific experiment by UID:

Input:

experiment = workspace.experiments.get(uid="d9a47c99-c66c-4ff9-b2b6-30faf5f413ef")
experiment

Note: You can also retrieve a specific experiment from the list returned by list() using indexing.
For example, experiment = workspace.experiments.list(key=value)[index]. The key and value arguments are
optional.

Output:

<class 'h2o_mlops._experiments.MLOpsExperiment(
uid='d9a47c99-c66c-4ff9-b2b6-30faf5f413ef',
name='my-experiment',
description='Test experiment',
creator_uid='4c4eb198-bcbc-4442-91f6-a27deb53e9c1',
created_time=datetime.datetime(2025, 5, 22, 7, 2, 48, 185159, tzinfo=tzutc()),
last_modified_time=datetime.datetime(2025, 5, 22, 7, 2, 48, 185159, tzinfo=tzutc()),

)'>

Experiment properties
An experiment has the following main properties:

• uid: The unique identifier of the experiment.
• name: The name of the experiment.
• description: A description of the experiment.
• creator: The user who created the experiment.
• created_time: The timestamp when the experiment was created.
• last_modified_time: The timestamp of the last modification.
• is_registered: If the experiment is registered or not.

Metadata

Each experiment includes metadata you can retrieve using the following method:

Input:

experiment.metadata

Output:

76 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

| key | value
---+---------------------+---
0 | h2o3/algo | glm
1 | h2o3/algo_full_name | Generalized Linear Modeling
2 | h2o3/category | Regression
3 | h2o3/columns | ['Origin', 'Dest', 'fDayofMonth', 'fYear...
4 | h2o3/created_time | 2020-08-24 07:21:50.137000+00:00
5 | input_schema | [{'name': 'Origin', 'type': 'STR'}, {'na...
6 | model_type | h2o3/mojo
7 | output_schema | [{'name': 'Distance', 'type': 'FLOAT64'}...
8 | tool | h2o3

To get a specific metadata entry by index:

Input:

experiment.metadata[3]

Output:

{'h2o3/columns': ['Origin',
'Dest',
'fDayofMonth',
'fYear',
'UniqueCarrier',
'fDayOfWeek',
'fMonth',
'IsDepDelayed']}

Parameters

To access parameters related to the dataset used in the experiment:

Input:

experiment.parameters["target_column"]

Output:

{'training_dataset_id': '',
'validation_dataset_id': '',
'test_dataset_id': '',
'target_column': 'Distance',
'weight_column': '',
'fold_column': ''}

In this example, the target column is Distance.

Statistics

To access training statistics:

Input:

experiment.statistics

Output:

{'training_duration': None}

Input schema

To view the schema of the input dataset:

Input:

experiment.input_schema

77 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Output:

| name | type
---+---------------+--------
0 | Origin | STR
1 | Dest | STR
2 | fDayofMonth | STR
3 | fYear | STR
4 | UniqueCarrier | STR
5 | fDayOfWeek | STR
6 | fMonth | STR
7 | IsDepDelayed | STR

Output schema

To view the output schema of the experiment:

Input:

experiment.output_schema

Output:

| name | type
---+----------+---------
0 | Distance | FLOAT64

Scoring runtimes

You can list the available scoring runtimes that might be used when deploying the experiment:

Input:

scoring_runtimes = experiment.scoring_runtimes
scoring_runtimes

Output:

| artifact_type | runtime_uid | runtime_name
---+-----------------+---------------------------------------+--
0 | h2o3_mojo | h2o3_mojo_runtime | H2O-3 MOJO Scorer
1 | h2o3_mojo | h2o3_mojo_runtime_shapley_transformed | H2O-3 MOJO Scorer (Shapley transformed only)

To view details of a specific scoring runtime:

Input:

scoring_runtimes[0]

Output:

<class 'h2o_mlops._runtimes.MLOpsScoringRuntime(
runtime='h2o3_mojo_runtime',
artifact_type='h2o3_mojo',
artifact_processor='h2o3_mojo_extractor',
model_type='h2o3_mojo',

)'>

Compute Kubernetes options
To compute Kubernetes options for an experiment runtime:

Input:

experiment.compute_k8s_options(
runtime_uid="h2o3_mojo_runtime", workers=1

)

78 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Output:

KubernetesOptions(
replicas=1,
requests={'cpu': '500m', 'memory': '128Mi'},
limits={},
affinity=None,
toleration=None

)

Update an experiment
You can update only the name and description fields of an experiment.

Make sure to retrieve the experiment instance before updating it. See Retrieve an experiment.

Input:

experiment.update(name="new-experiment")
experiment

Output:

<class 'h2o_mlops._experiments.MLOpsExperiment(
uid='d9a47c99-c66c-4ff9-b2b6-30faf5f413ef',
name='new-experiment',
description='Test experiment',
creator_uid='4c4eb198-bcbc-4442-91f6-a27deb53e9c1',
created_time=datetime.datetime(2025, 5, 22, 7, 2, 48, 185159, tzinfo=tzutc()),
last_modified_time=datetime.datetime(2025, 5, 22, 7, 3, 26, 278369, tzinfo=tzutc()),

)'>

Add comments to an experiment
You can add one or more comments to an experiment to share information with collaborators.

experiment.comments.add("Comment 01")
experiment.comments.add("Comment 02")

To list all comments:

Input:

experiment.comments.list()

Output:

| created_time | author_username | message
---+------------------------+--------------------+------------
0 | 2025-05-22 07:03:30 AM | user | Comment 01
1 | 2025-05-22 07:03:31 AM | user | Comment 02

Manage experiment tags
You can create tags and add them to experiments to group related experiments. For example, you can create a tag called
Telco for telecommunication-related experiments and later retrieve them as a group.

Create a tag

To create a new tag in a workspace:

tag1 = workspace.tags.create(label="tag1")

79 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

List tags

To list all tags in a workspace:

Input:

workspace.tags.list()

Output:

| label | uid
---+---------+--------------------------------------
0 | tag1 | 31fc1901-1134-4384-ac07-e0965f8e30c7

Get a specific tag

To retrieve a tag by its label:

Input:

tag1 = workspace.tags.get(label="tag1")
tag1

Output:

<class 'h2o_mlops._projects.MLOpsProjectTag(
uid='31fc1901-1134-4384-ac07-e0965f8e30c7',
label='tag1',
parent_workspace_uid='e37a6146-5248-4754-9d93-68a9798babb2',
created_time=datetime.datetime(2025, 5, 22, 7, 3, 35, 596458, tzinfo=tzutc()),

)'>

Add tag

To add an existing tag to an experiment:

experiment.tags.add(label="tag1")

To add a new tag to an experiment without creating it first:

experiment.tags.add(label="tag2")

To list and verify all tags in an experiment:

Input:

experiment.tags.list()

Output:

| label | uid
---+---------+--------------------------------------
0 | tag1 | 31fc1901-1134-4384-ac07-e0965f8e30c7
1 | tag2 | b541b0b1-6371-4106-8095-94c9c25f2f0a

Update a tag

To update a tag’s label and view the updated list:

Input:

tag1.update(label="new-tag1")
experiment.tags.list() # or workspace.tags.list()

Output:

| label | uid
---+----------+--------------------------------------
0 | tag2 | b541b0b1-6371-4106-8095-94c9c25f2f0a
1 | new-tag1 | 31fc1901-1134-4384-ac07-e0965f8e30c7

80 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Remove a tag

To remove a tag from an experiment:

Input:

experiment.tags.remove(label="new-tag1")
experiment.tags.list()

Output:

| label | uid
---+---------+--------------------------------------
0 | tag2 | b541b0b1-6371-4106-8095-94c9c25f2f0a

This removes the tag only from the experiment, not from the workspace.

To view all tags in a workspace after performing the above removal, use the following method:

Input:

workspace.tags.list()

This displays the list of tags currently available in the workspace.

Output:

| label | uid
---+----------+--------------------------------------
0 | tag2 | b541b0b1-6371-4106-8095-94c9c25f2f0a
1 | new-tag1 | 31fc1901-1134-4384-ac07-e0965f8e30c7

Delete a tag

To delete a tag from a workspace:

Input:

tag1.delete()
workspace.tags.list()

Output:

| label | uid
---+---------+--------------------------------------
0 | tag2 | b541b0b1-6371-4106-8095-94c9c25f2f0a

Note: You cannot delete a tag from a workspace if it has already been added to an experiment.

Delete and restore experiments
This section describes how to delete and restore experiments.

Delete using an experiment instance

If you already have a reference to the experiment object, use the delete() method:

Input:

experiment.delete()
workspace.experiments.list()

Output:

| name | uid | tags
---+--------+-------+--------

81 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Restore using an experiment instance

If you already have a reference to the experiment object, use the restore() method:

Input:

experiment.restore()
workspace.experiments.list()

Output:

| name | uid | tags
---+------------------------+--------------------------------------+--------
0 | new-experiment | d9a47c99-c66c-4ff9-b2b6-30faf5f413ef | tag2

Delete using experiment UIDs

You can also delete multiple experiments at once by specifying their UIDs:

Input:

workspace.experiments.delete(uids=["d9a47c99-c66c-4ff9-b2b6-30faf5f413ef"])

Note: You can also pass a list of MLOpsExperiment instances or a _utils.Table containing experiments. Example:
workspace.experiments.delete(experiments=[experiment])

Output:

| experiment_uid | is_deleted | message | workspace_uid
---+--------------------------------------+--------------+-----------+--------------------------------------
0 | d9a47c99-c66c-4ff9-b2b6-30faf5f413ef | True | | e37a6146-5248-4754-9d93-68a9798babb2

Restore using experiment UIDs

You can also restore multiple experiments at once by specifying their UIDs:

Input:

workspace.experiments.restore(uids=["d9a47c99-c66c-4ff9-b2b6-30faf5f413ef"])

Note: You can also pass a list of MLOpsExperiment instances or a _utils.Table containing experiments. Example:
workspace.experiments.restore(experiments=[experiment])

Output:

| experiment_uid | is_restored | message | workspace_uid
---+--------------------------------------+---------------+-----------+--------------------------------------
0 | d9a47c99-c66c-4ff9-b2b6-30faf5f413ef | True | | e37a6146-5248-4754-9d93-68a9798babb2

82 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Handle artifacts
This guide explains how to add artifacts to an MLOps entity, such as a workspace, dataset, experiment, or deployment, as
well as how to retrieve, update, delete, or convert artifacts to a string or dictionary.

Prerequisites
Before you begin,

• Connect to H2O MLOps. For instructions, see Connect to H2O MLOps.
• Create an MLOps entity and assign it to a variable named entity.

• To create a workspace, see Create a workspace.
• To create an experiment entity, see Create an experiment.

Add an artifact
Use the add() method to upload an artifact to an entity.

artifact = entity.artifacts.add(
data="/path/to/docx_artifact.docx",
mime_type="application/vnd.openxmlformats-officedocument.wordprocessingml.document",

)

Note: If you link a H2O Driverless AI (DAI) experiment to a workspace directly from a DAI instance, all its artifacts are
added to the experiment automatically.

View artifacts
List artifacts

Use the list() method to view all artifacts linked to an entity.

Input:

artifacts = entity.artifacts.list()
artifacts

Output:

| name | mime_type | uid
---+--------------------+---------------------------+--------------------------------------
0 | docx_artifact.docx | application/vnd.openxmlfo | 92e4ea49-fdcd-436b-9293-dcd0e8fdae18

Note:

• The output of list() method is displayed in a neatly formatted view. By default, only the first 50 rows are displayed
to keep the output concise and manageable.

• Calling len(artifacts) returns the total number of rows it contains, not just the number currently displayed.

• To customize the number of rows displayed, you can call the show() method with the n argument. This allows more
rows to be shown when needed. For example: >python >artifacts.show(n=100) > This will display up
to 100 artifacts.

• The artifacts can be iterated over, as it is designed to behave like an iterator.

Filter artifacts

Use the list() method with key-value arguments to filter the artifacts.

Input:

entity.artifacts.list(name="docx_artifact.docx")

This returns a list of matching artifacts as a table.

Output:

83 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

| name | mime_type | uid
---+--------------------+---------------------------+--------------------------------------
0 | docx_artifact.docx | application/vnd.openxmlfo | 92e4ea49-fdcd-436b-9293-dcd0e8fdae18

Retrieve an artifact

Use the get() method to retrieve a specific artifact by its unique ID.

Input:

artifact = entity.artifacts.get(uid="92e4ea49-fdcd-436b-9293-dcd0e8fdae18")
artifact

Note: You can retrieve a specific artifact from the list returned by list() using indexing.
For example, artifact = entity.artifacts.list(key=value)[index]. The key and value arguments are optional.

Output:

<class 'h2o_mlops._artifacts.MLOpsArtifact(
uid='92e4ea49-fdcd-436b-9293-dcd0e8fdae18',
parent_entity_uid='777b3d15-36ba-4a96-b687-47e3d6687d4d',
name='docx_artifact.docx',
state='AVAILABLE',
mime_type='application/vnd.openxmlformats-officedocument.wordprocessingml.document',
size=0,
md5_digest='1B2M2Y8AsgTpgAmY7PhCfg==',
created_time=datetime.datetime(2025, 6, 11, 17, 31, 12, 850635, tzinfo=tzutc()),
uploaded_time=datetime.datetime(2025, 6, 11, 17, 31, 16, 26743, tzinfo=tzutc()),
last_modified_time=datetime.datetime(2025, 6, 11, 17, 31, 16, 27248, tzinfo=tzutc()),

)'>

Artifact properties
An artifact has the following main properties:

• uid: Unique ID of the artifact

• parent_entity_uid: ID of the parent workspace, dataset, etc.

• name: Name of the artifact

• state: Artifact state

• mime_type: File type of the artifact

• size: File size in bytes

• md5_digest: MD5 hash of the artifact

• created_time: Timestamp when the artifact was created

• uploaded_time: Timestamp when the artifact was uploaded
• last_modified_time: Last time the artifact was updated

• model_info: Model-specific metadata, if applicable

Download an artifact
To download an artifact:

Input:

artifact.download()

84 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Output:

'docx_artifact.docx'

The download() method supports the following optional parameters:

• directory: Target folder (default: current working directory)
• file_name: Output filename (default: artifact’s name)
• overwrite: Whether to overwrite the file if it exists (default: False)
• buffer: Store the file in memory using io.BytesIO instead of writing to disk

Note:

• If you don’t specify any options, the artifact downloads to the current working directory using its name.

• If the artifact name does not include a file extension, you must pass the file_name argument with the appropriate
extension. You can use the artifact’s MIME type (mime_type) to determine the correct file extension.

Common MIME types and corresponding file extensions:

MIME type File extension
application/vnd.openxmlformats-ofÏcedocument.wordprocessingml.document .docx
application/json .json
text/plain .txt
application/zip .zip
application/pdf .pdf
image/png .png

Convert artifacts
Artifacts can be converted to string or dictionary format, depending on their type:

• A JSON artifact can be converted to a string or a dictionary.
• A text artifact can only be converted to a string.
• Other artifact types cannot be converted.

Convert JSON artifacts

To convert JSON artifacts to a string and a dictionary, follow these steps:

1. Add the JSON file to the specified entity as an artifact.

json_artifact = entity.artifacts.add(
data="/path/to/json_artifact.json",
mime_type="application/json",

)

2. Convert the JSON artifact to a string:

Input:

json_artifact.to_string()

Output:

'{\n "key": "value"\n}\n'

3. Convert a JSON artifact to a dictionary:

Input:

json_artifact.to_dict()

Output:

{'key': 'value'}

85 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Convert text artifacts

To convert text artifacts to a string, follow these steps:

1. Add the text file to the specified entity as an artifact.

text_artifact = entity.artifacts.add(
data="/path/to/txt_artifact.txt",
mime_type="text/plain",

)

2. Convert the text artifact to a string:

Input:

text_artifact.to_string()

Output:

"It's a text file.\n"

Update an artifact
You can update only the name and parent_entity fields of an artifact.

Make sure to retrieve the artifact before updating it. See Retrieve an artifact.

Input:

artifact.update(name="my-docx-artifact")
artifact

Output:

<class 'h2o_mlops._artifacts.MLOpsArtifact(
uid='92e4ea49-fdcd-436b-9293-dcd0e8fdae18',
parent_entity_uid='777b3d15-36ba-4a96-b687-47e3d6687d4d',
name='my-docx-artifact',
state='AVAILABLE',
mime_type='application/vnd.openxmlformats-officedocument.wordprocessingml.document',
size=0,
md5_digest='1B2M2Y8AsgTpgAmY7PhCfg==',
created_time=datetime.datetime(2025, 6, 11, 17, 31, 12, 850635, tzinfo=tzutc()),
uploaded_time=datetime.datetime(2025, 6, 11, 17, 31, 16, 26743, tzinfo=tzutc()),
last_modified_time=datetime.datetime(2025, 6, 11, 17, 31, 36, 773648, tzinfo=tzutc()),

)'>

Delete an artifact
This section describes how to delete an artifact.

Use the delete() method to remove the artifact from the entity:

Input:

artifact.delete()
entity.artifacts.list()

In this example, artifact.delete() deletes the docx_artifact.docx artifact assigned to the artifact variable earlier in
the Add an artifact section and retrieved in the Retrieve an artifact section.

The list() output confirms that the artifact has been successfully removed.

Output:

| name | mime_type | uid
---+--------------------+------------------+--------------------------------------
0 | txt_artifact.txt | text/plain | 04eaf9e2-f6cf-4140-9686-b31290f7fd17
1 | json_artifact.json | application/json | 5d442fc2-d0ae-42eb-8050-42255fa8c10a

86 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

After deletion, the docx_artifact.docx artifact no longer appears in the list of artifacts for the entity.

87 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Manage Models
This page describes how to create and view models, manage model versions, and delete models using the H2O MLOps
Python client.

To learn more about models, see Understand models.

Prerequisites
Before you begin, 1. Connect to H2O MLOps. For instructions, see Connect to H2O MLOps. 2. Create a workspace. For
instructions, see Create a workspace. 3. Create an experiment. For instructions, see Create an experiment.

Create a model
Create a model within the workspace using the create() method by specifying the model name and the description.

model = workspace.models.create(name="my-model", description="My Model")

Note: The name of the model must be unique within the workspace.

View models
Count models

Get the total number of models in a workspace:

Input:

workspace.models.count()

Output:

1

List models

List all models in a workspace:

Input:

models = workspace.models.list()
models

Output:

| name | uid
---+----------+--------------------------------------
0 | my-model | 27965199-6f0f-4cbe-bf48-e59b05fa1f04

Note:

• The output of list() method is displayed in a neatly formatted view. By default, only the first 50 rows are displayed
to keep the output concise and manageable.

• Calling len(models) returns the total number of rows it contains, not just the number currently displayed.

• To customize the number of rows displayed, you can call the show() method with the n argument. This allows more
rows to be shown when needed. For example: >python >models.show(n=100) > This will display up to
100 models.

• The models can be iterated over, as it is designed to behave like an iterator.

Filter models

Use the list() method with key-value arguments to filter the models.

Input:

workspace.models.list(name="my-model")

88 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

This returns a list of matching models as a table.

Output:

| name | uid
---+----------+--------------------------------------
0 | my-model | 27965199-6f0f-4cbe-bf48-e59b05fa1f04

Retrieve a model

Retrieve a model by UID:

model = workspace.models.get(uid="d9a47c99-c66c-4ff9-b2b6-30faf5f413ef")

Retrieve a model by model name:

Input:

model = workspace.models.get(name="my-model")
model

Output:

<class 'h2o_mlops._models.MLOpsModel(
uid='27965199-6f0f-4cbe-bf48-e59b05fa1f04',
name='my-model',
description='My Model',
creator_uid='4c4eb198-bcbc-4442-91f6-a27deb53e9c1',
created_time=datetime.datetime(2025, 6, 3, 15, 33, 10, 882595, tzinfo=tzutc()),
last_modified_time=datetime.datetime(2025, 6, 3, 15, 33, 10, 882595, tzinfo=tzutc()),

)'>

Note: You can also retrieve a model from the list returned by list() using indexing.
For example, model = workspace.models.list(key=value)[index]. The key and value arguments are optional.

Model properties
A model has the following main properties:

• uid: The unique identifier for the model.
• name: The name of the model.
• description: A description of the model.
• creator: The user who created the model.
• created_time: The timestamp when the model was created.
• last_modified_time: The timestamp of the last modification.
• last_modified_by: The user who last modified the model.
• version_count: The number of versions of the model.

Update a model
You can update only the name and description fields of a model.

Make sure to retrieve the model instance before updating it. See Retrieve a model.

Input:

model.update(name="new-my-model", description="New My Model")
model

Output:

<class 'h2o_mlops._models.MLOpsModel(
uid='27965199-6f0f-4cbe-bf48-e59b05fa1f04',
name='new-my-model',
description='New My Model',
creator_uid='4c4eb198-bcbc-4442-91f6-a27deb53e9c1',
created_time=datetime.datetime(2025, 6, 3, 15, 33, 10, 882595, tzinfo=tzutc()),

89 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

last_modified_time=datetime.datetime(2025, 6, 3, 15, 33, 32, 502773, tzinfo=tzutc()),
)'>

Manage model versions
Register an experiment with a model

To create a new version of a model, register an experiment with it.

Use the following code:

model.register(experiment=experiment)

Note: You can also register an experiment using the following alternative methods:

• Register an experiment with an existing model using artifact data. No need for an MLOpsExperiment instance. This
method creates and registers the experiment with the model.

Example: >python >model.register(experiment="/path/experiment.zip", name="experiment-name")
>

• Register an experiment and create a new model directly using artifact data. No need for MLOpsModel or
MLOpsExperiment instances. This method creates both the model and the experiment, then registers the experiment
with the model.

Example: >python >model = workspace.models.register(experiment="/path/experiment.zip",
name="experiment-and-model-name",) >

To verify that the experiment is registered with the model, run the following code:

Input:

experiment.registered_model

This returns a tuple containing the associated MLOpsModel instance and the model version the experiment was registered
to.

Output:

(<class 'h2o_mlops._models.MLOpsModel(
uid='27965199-6f0f-4cbe-bf48-e59b05fa1f04',
name='new-my-model',
description='New My Model',
creator_uid='4c4eb198-bcbc-4442-91f6-a27deb53e9c1',
created_time=datetime.datetime(2025, 6, 3, 15, 33, 10, 882595, tzinfo=tzutc()),
last_modified_time=datetime.datetime(2025, 6, 3, 15, 33, 40, 578744, tzinfo=tzutc()),

)'>,1)

List model versions

List all versions of a model:

Input:

model.versions()

Output:

| version | experiment_uid
---+-----------+--------------------------------------
0 | 1 | bdf42b57-c3de-4f33-8c37-f19a9f5f765d

Filter model versions

Use the versions() method with key-value arguments to filter the model versions.

Input:

model.versions(version=1)

90 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

This returns a list of matching model versions as a table.

Output:

| version | experiment_uid
---+-----------+--------------------------------------
0 | 1 | bdf42b57-c3de-4f33-8c37-f19a9f5f765d

Retrieve a model version

You can retrieve a specific version of a model from the list returned by versions() using indexing.
For example, version = model.versions(key=value)[index]. The key and value arguments are optional.

Input:

model.versions(version=1)[0]

Output:

MLOpsModelVersion(
uid='7fb119cf-aaaa-42e2-985c-e71a84e6396a',
version=1,
model_uid='27965199-6f0f-4cbe-bf48-e59b05fa1f04'
experiment_uid='bdf42b57-c3de-4f33-8c37-f19a9f5f765d',
creator_uid='4c4eb198-bcbc-4442-91f6-a27deb53e9c1',
created_time='2025-06-03 03:33:40 PM',
last_modified_time='2025-06-03 03:33:40 PM',
last_modified_by='4c4eb198-bcbc-4442-91f6-a27deb53e9c1',
state='ACTIVE'

)

Retrieve the experiment

Get the experiment associated with a model version:

Input:

model.experiment(model_version=1)

Note: If nothing is specified for the model_version, the default value "latest" is used.

Output:

<class 'h2o_mlops._experiments.MLOpsExperiment(
uid='bdf42b57-c3de-4f33-8c37-f19a9f5f765d',
name='H2O3 MOJO experiment',
description='GLM - Regression',
is_registered=True,
owner_username='test.user@test.com',
created_time=datetime.datetime(2025, 6, 3, 15, 33, 8, 159914, tzinfo=tzutc()),
last_modified_time=datetime.datetime(2025, 6, 3, 15, 33, 8, 159914, tzinfo=tzutc())

)'>

Unregister an experiment from a model

To remove an experiment from a model, run:

model.unregister(experiment=experiment)

After unregistering the experiment, list the available model versions to verify the change:

Input:

model.versions()

Output:

91 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

| version | experiment_uid
---+-----------+------------------

The model version created during registration is removed.

Note: To unregister all the models, use: >python >model.unregister(unregister_all=True) >

Delete models
This section describes two ways to delete models.

danger WARNING Deleting a model also deletes all of its associated versions. This action is irreversible.

Delete using a model instance

If you already have a reference to the model object, use the delete() method:

model.delete()

Delete using model UIDs

You can delete multiple models at once by specifying their UIDs.

Input:

workspace.models.delete(uids=["c62ced74-905a-4f06-856d-33b9f5725901"])

Note: You can also pass a list of MLOpsModel instances or a _utils.Table containing models. For example:
workspace.models.delete(models=[model]).

Output:

| model_uid | is_deleted | message
---+--------------------------------------+--------------+-----------
0 | c62ced74-905a-4f06-856d-33b9f5725901 | True |

92 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Configure deployments
This page describes the available options for configuring deployments using the H2O MLOps Python client.

Prerequisites
Before you begin, complete the following steps:

1. Import the necessary Python packages. For instructions, see Step 1: Import the required packages.
2. Connect to H2O MLOps. For instructions, see Connect to H2O MLOps.
3. Create a workspace. For instructions, see Create a workspace.
4. Create one or two experiments. For instructions, see Create an experiment.
5. Create models and register the experiments with them. For instructions, see Register an experiment with a model.

To follow the examples in the next sections, assume the following:

• You have created two models and assigned them to the variables model_1 and model_2. Each model has a registered
experiment.

• You have two scoring runtimes assigned to the variables scoring_runtime_1 and scoring_runtime_2, each corre-
sponding to the respective experiment.

For details on how to retrieve a scoring runtime for an experiment, see Scoring runtimes.

Composition options
Composition options define how models are composed for deployment.

• model: _models.MLOpsModel - The model to deploy.
• scoring_runtime: _runtimes.MLOpsScoringRuntime - The runtime environment used for scoring.
• model_version: Union[int, str] = "latest" - The version of the model to deploy.
• traffic_weight: Optional[int] = None - The ratio of trafÏc to direct to a specific deployment in an A/B test.
• primary: Optional[bool] = None - Indicates whether this deployment is the primary (champion) or secondary

(challenger) in a champion/challenger setup.

There are three types of deployments: single model, A/B test, and champion/challenger. Each type requires different
composition options, as described below:

Single model deployment

composition_options = options.CompositionOptions(
model=model_1,
scoring_runtime=scoring_runtime_1,

)

A/B test deployment

composition_options = [
options.CompositionOptions(

model=model_1,
scoring_runtime=scoring_runtime_1,
traffic_weight=2,

),
options.CompositionOptions(

model=model_2,
scoring_runtime=scoring_runtime_2,
traffic_weight=1,

),
]

Champion/Challenger deployment

composition_options = [
options.CompositionOptions(

model=model_1,
scoring_runtime=scoring_runtime_1,

93 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

primary=True,
),
options.CompositionOptions(

model=model_2,
scoring_runtime=scoring_runtime_2,
primary=False,

),
]

For more information about deployment types, see Deployment type.

Security options
Security options let you configure security settings for your deployment.

• security_type: types.SecurityType - The type of security to use.
Available values:

• DISABLED
• PLAIN_PASSPHRASE
• HASHED_PASSPHRASE
• OIDC_AUTH: Requires additional configuration in the values.yaml file.

• passphrase: Optional[str] = None - The passphrase to use, if required by the selected security type.

For more information, see Endpoint security.

Note: Not all types are supported in every environment. Support can be configurable.

To check the allowed types using the H2O MLOps Python client, run: mlops.configs.allowed_security_types

Use the following code to create security options:

security_options = options.SecurityOptions(
security_type=types.SecurityType.HASHED_PASSPHRASE,
passphrase="123abcABC",

)

Kubernetes options
The following options let you customize Kubernetes deployment settings:

• replicas: int = 1
• requests: Optional[Dict[str, str]] = None
• limits: Optional[Dict[str, str]] = None
• affinity: Optional[str] = None
• toleration: Optional[str] = None

For more information about replicas, requests, and limits, see Kubernetes options. For more information about
affinity and toleration, see Node afÏnity and toleration.

Note: Not all options are supported in every environment. Support can be configurable.

To check the default / allowed values for each option using the H2O MLOps Python client, run the following codes:

• mlops.configs.default_k8s_requests
• mlops.configs.default_k8s_limits
• mlops.configs.allowed_k8s_affinities
• mlops.configs.allowed_k8s_tolerations

Use the following code to create Kubernetes options:

kubernetes_options = options.KubernetesOptions()

94 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Vertical Pod Autoscaler (VPA) options
Configure the following Vertical Pod Autoscaler (VPA) settings to automatically adjust resource requests:

• resource_type: types.KubernetesResourceType - The type of resource to adjust.
Supported values are:

• CPU
• MEMORY

• unit: types.KubernetesResourceUnitType - The unit used for the resource.
Supported values are:

• MILLI_CORE
• CORES
• MIB
• GIB

• min_bound: float - The minimum resource request value allowed.

• max_bound: float - The maximum resource request value allowed.

Use the following code to create VPA options:

vpa_options = [
options.VPAOptions(

resource_type=types.KubernetesResourceType.CPU,
unit=types.KubernetesResourceUnitType.MILLI_CORES,
min_bound=100,
max_bound=200,

),
options.VPAOptions(

resource_type=types.KubernetesResourceType.MEMORY,
unit=types.KubernetesResourceUnitType.MIB,
min_bound=200,
max_bound=400,

),
]

Pod Disruption Budget (PDB) options
Use the following options to control pod availability during voluntary disruptions:

• pods: int - The number of pods.

• disruption_policy: types.DisruptionPolicyType - The disruption policy to apply.
Valid values:

• MIN_AVAILABLE
• MAX_UNAVAILABLE

• is_percentage: bool = False - Indicates whether the pods value is a percentage.

For more information, see Pod Disruption Budget (PDB).

Use the following code to create PDB options:

pdb_options = options.PDBOptions(
pods=1,
disruption_policy=types.DisruptionPolicyType.MIN_AVAILABLE,

)

Environment variables
Specify environment variables to add to the scoring runtime:

95 © 2024 H2O.ai, Inc. All rights reserved.

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#vertical-pod-autoscaler

H2O MLOps Version v1.0.0

environment_variables = {
"KEY_1": "VALUE_1",
"KEY_2": "VALUE_2",
"KEY_3": "VALUE_3",

}

CORS origins
Define allowed CORS origins:

cors_origins = [
"http://localhost:8080",
"http://customcors.com",

]

Monitoring options
Configure monitoring settings for your deployment:

monitoring_options = options.MonitoringOptions()

96 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Manage deployments
This page describes how to create, view, update, and delete deployments, as well as how to view logs and configure
endpoints using the H2O MLOps Python client.

To learn more about deployments, see Understand deployments in MLOps.

Prerequisites
Before you begin,

1. Import the necessary Python packages. For instructions, see Step 1: Import the required packages.
2. Connect to H2O MLOps. For instructions, see Connect to H2O MLOps.
3. Create a workspace. For instructions, see Create a workspace.
4. Create one or two experiments. For instructions, see Create an experiment.
5. Create models and register the experiments with them. For instructions, see Register an experiment with a model.

Create a deployment
Create a deployment within the workspace using the create() method by specifying the deployment name, composition
options, and security options.

deployment = workspace.deployments.create(
name="my-deployment",
composition_options=options.CompositionOptions(

model=model,
scoring_runtime=mlops.runtimes.scoring.get(

artifact_type="h2o3_mojo",
runtime_uid="h2o3_mojo_runtime",

),
),
security_options=options.SecurityOptions(

security_type=types.SecurityType.DISABLED,
),

)

The create() method supports the following optional arguments:

• mode: types.DeploymentModeType = types.DeploymentModeType.SINGLE_MODEL – The type of deployment.
Available values:

• SINGLE_MODEL
• AB_TEST
• CHAMPION_CHALLENGER

• description: Optional[str] = None – The deployment description.

• kubernetes_options: Optional[options.KubernetesOptions] = None – Customize Kubernetes deployment set-
tings.

• vpa_options: Optional[List[options.VPAOptions]] = None – Configure Vertical Pod Autoscaler (VPA) settings.

• pdb_options: Optional[options.PDBOptions] = None – Control pod availability during voluntary disruptions.

• environment_variables: Optional[Dict[str, str]] = None – Specify environment variables to add to the
scoring runtime.

• cors_origins: Optional[List[str]] = None – Define allowed CORS origins.

• monitoring_options: Optional[options.MonitoringOptions] = None – Configure monitoring settings for the
deployment.

For more details on these configuration options, see Configure deployments.

The deployment might take a few seconds. Use the following command to wait until the deployment is healthy and ready
to use:

97 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

deployment.wait_for_healthy()

Note: To retry a failed deployment, use the following command. It checks the current deployment status and, if it’s in a
failed state, attempts to redeploy it: >python >deployment.redeploy_if_failed() >

View deployments
List deployments

List all deployments in a workspace:

Input:

deployments = workspace.deployments.list()
deployments

Output:

| name | mode | uid
---+---------------+--------------+--------------------------------------
0 | my-deployment | Single Model | 48ece40f-8608-473a-92a6-388e164e995

Note:

• The output of list() method is displayed in a neatly formatted view. By default, only the first 50 rows are displayed
to keep the output concise and manageable.

• Calling len(deployments) returns the total number of rows it contains, not just the number currently displayed.

• To customize the number of rows displayed, you can call the show() method with the n argument. This allows more
rows to be shown when needed. For example: >python >deployments.show(n=100) > This will display
up to 100 deployments.

• The deployments can be iterated over, as it is designed to behave like an iterator.

List deployment statuses

Use the statuses() method to view the statuses of all deployments.

Input:

workspace.deployments.statuses()

This returns a list of deployments and their statuses in a table.

Output:

| uid | state
---+--------------------------------------+---------
0 | 48ece40f-8608-473a-92a6-388e164e9952 | HEALTHY

Possible status values:

• PREPARING: Preparing the deployment for launch (for example, building assets).
• LAUNCHING: Deployment is launching to an environment (for example, waiting for the environment to start).
• FAILED: Deployment failed during preparation or launch.
• HEALTHY: Deployment is alive and healthy.
• UNHEALTHY: Health issues detected in the launched deployment.
• TERMINATING: Deployment is terminating (that is, environment resources are being brought down).
• PENDING: Deployment created and awaiting processing.
• STOPPED: The deployment is scaled down.

Filter deployments

Use the list() method with key-value arguments to filter deployments.

Input:

workspace.deployments.list(name="my-deployment")

98 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

This returns a list of matching deployments as a table.

Output:

| name | mode | uid
---+---------------+--------------+--------------------------------------
0 | my-deployment | Single Model | 48ece40f-8608-473a-92a6-388e164e9952

Retrieve a deployment

Retrieve a deployment by UID:

Input:

deployment = workspace.deployments.get(uid="48ece40f-8608-473a-92a6-388e164e9952")
deployment

Note: You can also retrieve a deployment from the list returned by list() using indexing.
For example, deployment = workspace.deployments.list(key=value)[index]. The key and value arguments are
optional.

Output:

<class 'h2o_mlops._deployments.MLOpsScoringDeployment(
uid='48ece40f-8608-473a-92a6-388e164e9952',
name='my-deployment',
description='',
mode=<DeploymentModeType.SINGLE_MODEL: 'Single Model'>,
creator_uid='4c4eb198-bcbc-4442-91f6-a27deb53e9c1',
created_time=datetime.datetime(2025, 6, 27, 5, 4, 32, 14134, tzinfo=tzutc()),
last_modified_time=datetime.datetime(2025, 6, 27, 5, 4, 32, 14134, tzinfo=tzutc()),

)'>

Deployment properties
A deployment has the following main properties:

• uid: The unique identifier for the deployment.
• name: The name of the deployment.
• description: A description of the deployment.
• mode: The deployment mode (for example, SINGLE_MODEL or AB_TEST).
• creator: The user who created the deployment.
• created_time: The timestamp when the deployment was created.
• last_modified_time: The timestamp of the last update.
• revision_uid: The revision ID of the deployment.
• state: The current status of the deployment.
• is_healthy: A boolean indicating whether the deployment is healthy.
• composition_options: Define how models are composed for deployment.
• security_options: Security configuration options.
• kubernetes_options: Kubernetes deployment configuration.
• vpa_options: Vertical Pod Autoscaler (VPA) settings.
• pdb_options: Pod disruption budget settings.
• environment_variables: Environment variables to add to the scoring runtime.
• cors_origins: A list of allowed CORS origins.
• monitoring_options: Monitoring configuration.
• experiments: The associated experiment(s) for the deployment.

View deployment logs
Call the logs() method to access the logs for a deployment:

logs = deployment.logs()

99 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

This returns a dictionary of log entries from different deployment pods.

To see which pods’ log entries were retrieved, use the keys() method:

Input:

keys = list(logs.keys())
keys

Output:

['primary.pr-48ece40f-8608-473a-92a6-388e164e9952-769f88644b-7qzcs.artifact-fetcher',
'primary.pr-48ece40f-8608-473a-92a6-388e164e9952-769f88644b-7qzcs.artifact-processor',
'primary.pr-48ece40f-8608-473a-92a6-388e164e9952-769f88644b-7qzcs.events',
'primary.pr-48ece40f-8608-473a-92a6-388e164e9952-769f88644b-7qzcs.proxy',
'primary.pr-48ece40f-8608-473a-92a6-388e164e9952-769f88644b-7qzcs.runtime']

As you already know the available dictionary keys, you can access the log entries for a specific pod.

For example, to view the full log for the runtime pod:

Input:

logs["primary.pr-48ece40f-8608-473a-92a6-388e164e9952-769f88644b-7qzcs.runtime"]

Output:

['2025-06-27 05:04:36.423321198 +0000 UTC: Picked up _JAVA_OPTIONS: -Dmojo.path=/data/model',
'2025-06-27 05:04:36.63684369 +0000 UTC: Standard Commons Logging discovery in action with spring-jcl: please remove commons-logging.jar from classpath in order to avoid potential conflicts',
'2025-06-27 05:04:37.092592485 +0000 UTC: ',
'2025-06-27 05:04:37.092627005 +0000 UTC: . ____ _ __ _ _',
"2025-06-27 05:04:37.092634066 +0000 UTC: /\\\\ / ___'_ __ _ _(_)_ __ __ _ \\ \\ \\ \\",
"2025-06-27 05:04:37.092639646 +0000 UTC: (()___ | '_ | '_| | '_ \\/ _` | \\ \\ \\ \\",
'2025-06-27 05:04:37.092645106 +0000 UTC: \\\\/ ___)| |_)| | | | | || (_| |))))',
"2025-06-27 05:04:37.092650616 +0000 UTC: ' |____| .__|_| |_|_| |___, | / / / /",
'2025-06-27 05:04:37.092656126 +0000 UTC: =========|_|==============|___/=/_/_/_/',
'2025-06-27 05:04:37.092661606 +0000 UTC: ',
'2025-06-27 05:04:37.094651073 +0000 UTC: :: Spring Boot :: (v3.3.12)',
'2025-06-27 05:04:37.094674983 +0000 UTC: ',
'2025-06-27 05:04:37.143507059 +0000 UTC: 2025-06-27T05:04:37.142Z INFO 1 --- [main] a.h.m.d.local.rest.ScorerApplication : Starting ScorerApplication v0.0.0.dev0+main.3c6156731c9d1c63d27498637cd3b4fea8bfd29e using Java 21.0.7 with PID 1 (/app/BOOT-INF/classes started by ? in /app)',
'2025-06-27 05:04:37.144078602 +0000 UTC: 2025-06-27T05:04:37.143Z INFO 1 --- [main] a.h.m.d.local.rest.ScorerApplication : No active profile set, falling back to 1 default profile: "default"',
'2025-06-27 05:04:37.974359799 +0000 UTC: 2025-06-27T05:04:37.974Z INFO 1 --- [main] o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat initialized with port 8080 (http)',
'2025-06-27 05:04:37.984421453 +0000 UTC: 2025-06-27T05:04:37.984Z INFO 1 --- [main] o.apache.catalina.core.StandardService : Starting service [Tomcat]',
'2025-06-27 05:04:37.984547596 +0000 UTC: 2025-06-27T05:04:37.984Z INFO 1 --- [main] o.apache.catalina.core.StandardEngine : Starting Servlet engine: [Apache Tomcat/10.1.42]',
'2025-06-27 05:04:38.01826987 +0000 UTC: 2025-06-27T05:04:38.017Z INFO 1 --- [main] o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring embedded WebApplicationContext',
'2025-06-27 05:04:38.01910209 +0000 UTC: 2025-06-27T05:04:38.018Z INFO 1 --- [main] w.s.c.ServletWebServerApplicationContext : Root WebApplicationContext: initialization completed in 742 ms',
'2025-06-27 05:04:38.021103686 +0000 UTC: Standard Commons Logging discovery in action with spring-jcl: please remove commons-logging.jar from classpath in order to avoid potential conflicts',
'2025-06-27 05:04:38.071485518 +0000 UTC: 2025-06-27T05:04:38.070Z INFO 1 --- [main] a.h.m.d.common.transform.MojoScorer : Loading Mojo pipeline from path /data/model',
'2025-06-27 05:04:38.075504291 +0000 UTC: 2025-06-27T05:04:38.075Z INFO 1 --- [main] a.h.m.r.a.backend.ZipFileReaderBackend : Opening mojo file: /data/model',
'2025-06-27 05:04:38.165548915 +0000 UTC: 2025-06-27T05:04:38.165Z INFO 1 --- [main] a.h.m.d.common.transform.MojoScorer : Loading Mojo pipeline from path /data/model',
'2025-06-27 05:04:38.165589516 +0000 UTC: 2025-06-27T05:04:38.165Z INFO 1 --- [main] a.h.m.r.a.backend.ZipFileReaderBackend : Opening mojo file: /data/model',
'2025-06-27 05:04:38.18428143 +0000 UTC: 2025-06-27T05:04:38.183Z INFO 1 --- [main] a.h.m.d.common.transform.MojoScorer : Mojo pipeline successfully loaded (4295412422633975888).',
"2025-06-27 05:04:38.486280193 +0000 UTC: 2025-06-27T05:04:38.485Z INFO 1 --- [main] o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat started on port 8080 (http) with context path '/'",
'2025-06-27 05:04:38.50331213 +0000 UTC: 2025-06-27T05:04:38.502Z INFO 1 --- [main] a.h.m.d.local.rest.ScorerApplication : Started ScorerApplication in 1.708 seconds (process running for 2.079)',
"2025-06-27 05:04:39.403663076 +0000 UTC: 2025-06-27T05:04:39.403Z INFO 1 --- [nio-8080-exec-1] o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring DispatcherServlet 'dispatcherServlet'",
"2025-06-27 05:04:39.4038616 +0000 UTC: 2025-06-27T05:04:39.403Z INFO 1 --- [nio-8080-exec-1] o.s.web.servlet.DispatcherServlet : Initializing Servlet 'dispatcherServlet'",
'2025-06-27 05:04:39.40514298 +0000 UTC: 2025-06-27T05:04:39.404Z INFO 1 --- [nio-8080-exec-1] o.s.web.servlet.DispatcherServlet : Completed initialization in 1 ms']

View deployment logs from a specific time

To get logs starting from a specific date and time:

from datetime import datetime, timedelta
from zoneinfo import ZoneInfo

100 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

since_time = datetime(2025, 6, 25, 9, 0, 0, tzinfo=ZoneInfo("Asia/Colombo"))
logs = deployment.logs(since_time=since_time)

Note: You can retrieve logs relative to the deployment’s creation time by using timedelta. For example, to get
logs starting 5 minutes after the deployment was created: >python >since_time = deployment.created_time +
timedelta(minutes=5) >logs = deployment.logs(since_time=since_time) >

Alternatively, you can get recent logs by subtracting a time duration from the current time. Make sure to
use timezone-aware datetime values. For example, to get logs from the past 5 minutes using the Asia/Colombo
timezone: >python >since_time = datetime.now(ZoneInfo("Asia/Colombo")) - timedelta(minutes=5) >logs =
deployment.logs(since_time=since_time) >

Manage endpoint
Configure endpoint

Configure a static path for the MLOps deployment REST endpoint:

endpoint = deployment.configure_endpoint(
path="static-path",

)

Note:

• You can use the configured path as an alias for the deployment ID in the deployment scorer API base URL.
• This path must be globally unique within the H2O MLOps environment to ensure proper routing and avoid collisions.
• For example, while the default scoring endpoint, f"https://model.dummy-

env.h2o.ai/{deployment.uid}/model/score" is always available and pre-configured, you can also use
f"https://model.dummy-env.h2o.ai/{endpoint.path}/model/score" for scoring.

• Both endpoints are valid and functional. The same applies to other endpoint types.

The configure_endpoint() method supports the following arguments:

• path: str - Path to use for the target deployment URLs.
• name: Optional[str] = None - Display name for the MLOps endpoint. (Used only if a new endpoint is created.)
• description: Optional[str] = None - Description for the MLOps endpoint. (Used only if a new endpoint is

created.)
• force: bool = False - Whether to attempt to reassign the path if it’s already in use by another deployment.

List deployment endpoints

To list all the endpoints attached to the deployment:

Input:

endpoints = deployment.endpoints
endpoints

Output:

| name | path | uid | target_deployment_uid
---+-------------+-------------+--------------------------------------+--------------------------------------
0 | static-path | static-path | 6ab2b92e-98c0-4c38-b4ef-4f6d9ba66e6f | 48ece40f-8608-473a-92a6-388e164e9952

Note: To list all the endpoints available within the workspace:

endpoints = workspace.endpoints.list()

Note:

• The output of list() method is displayed in a neatly formatted view. By default, only the first 50 rows are displayed
to keep the output concise and manageable.

• Calling len(endpoints) returns the total number of rows it contains, not just the number currently displayed.

• To customize the number of rows displayed, you can call the show() method with the n argument. This allows more
rows to be shown when needed. For example: >python >endpoints.show(n=100) > This will display up
to 100 endpoints.

101 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

• The endpoints can be iterated over, as it is designed to behave like an iterator.

Retrieve a deployment endpoint

To retrieve a deployment endpoint:

Input:

endpoint = endpoints[0]
endpoint

Output:

<class 'h2o_mlops._endpoints.MLOpsEndpoint(
uid='6ab2b92e-98c0-4c38-b4ef-4f6d9ba66e6f',
name='static-path',
description='',
path='static-path',
created_time=datetime.datetime(2025, 6, 27, 5, 5, 40, 146102, tzinfo=tzutc()),
last_modified_time=datetime.datetime(2025, 6, 27, 5, 5, 40, 146481, tzinfo=tzutc()),

)'>

Note: To retrieve an endpoint available within the workspace: >python >workspace.endpoints.get(uid=...) >

Detach a configured endpoint

To detach an endpoint from its current deployment, unset its target deployment as shown below:

endpoint.update(target_deployment=None)

You can then reuse the detached endpoint with another deployment without recreating it.

To verify that the endpoint is detached:

Input:

deployment.endpoints

Output:

| name | path | uid | target_deployment_uid
---+--------+--------+-------+-------------------------

Delete an endpoint

danger warning Deleting an endpoint also detaches the deployment associated with it.

To delete the endpoint:

endpoint.delete()

To verify deletion:

Input:

workspace.endpoints.list()

Output:

| name | path | uid | target_deployment_uid
---+--------+--------+-------+-------------------------

Update a deployment
You can update a deployment’s properties, including name, description, security_options, kubernetes_options,
vpa_options, pdb_options, environment_variables, cors_origins, and monitoring_options. For details on how to
configure these properties, see Configure deployments.

Make sure to retrieve the deployment before updating it. See Retrieve a deployment.

102 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Input:

deployment.update(name="my-new-deployment")
deployment

Output:

<class 'h2o_mlops._deployments.MLOpsScoringDeployment(
uid='48ece40f-8608-473a-92a6-388e164e9952',
name='my-new-deployment',
description='',
mode=<DeploymentModeType.SINGLE_MODEL: 'Single Model'>,
creator_uid='4c4eb198-bcbc-4442-91f6-a27deb53e9c1',
created_time=datetime.datetime(2025, 6, 27, 5, 4, 32, 14134, tzinfo=tzutc()),
last_modified_time=datetime.datetime(2025, 6, 27, 5, 6, 7, 730844, tzinfo=tzutc()),

)'>

Delete a deployment
Note: Deleting a deployment doesn’t delete the endpoint attached to it. Instead, the endpoint becomes detached and
enters a dangling state. You can reuse the same endpoint in a future deployment.

To delete a deployment:

deployment.delete()

103 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Deployment scorer
You can use the H2O MLOps Python client to score against deployments. This page explains how to retrieve deployment
scorer, access the scorer’s endpoints, and send scoring requests using various capabilities such as prediction intervals,
Shapley values, and media inputs.

Prerequisites
Before you begin,

1. Import the necessary Python packages. For instructions, see Step 1: Import the required packages.
2. Connect to H2O MLOps. For instructions, see Connect to H2O MLOps.
3. Create a workspace. For instructions, see Create a workspace.
4. Create one or two experiments. For instructions, see Create an experiment.
5. Create models and register the experiments with them. For instructions, see Register an experiment with a model.
6. Create a deployment. For instructions, see Create a deployment.

View deployment scorers
List deployment scorers

List all deployment scorers in a workspace:

Input:

workspace.deployments.scorers()

Output:

| uid | scoring_endpoint
---+--------------------------------------+---
0 | 822fcf3d-6d4c-4948-a71b-2d0b46db82a9 | https://model.dev.mlops-internal.h2o.dev/822fcf3d-6d4c-4948-a71b-2d0b46db82a9/model/score

Filter deployment scorers

Use the scorers() method with key-value arguments to filter the deployment scorers.

Input:

workspace.deployments.scorers(uid="822fcf3d-6d4c-4948-a71b-2d0b46db82a9")

This returns a list of matching deployment scorers as a table.

Output:

| uid | scoring_endpoint
---+--------------------------------------+---
0 | 822fcf3d-6d4c-4948-a71b-2d0b46db82a9 | https://model.dev.mlops-internal.h2o.dev/822fcf3d-6d4c-4948-a71b-2d0b46db82a9/model/score

Retrieve a deployment scorer

To retrieve the scorer object for a deployment:

Input:

scorer = deployment.scorer
scorer

Note: You can also retrieve a deployment scorer from the list returned by scorers() using indexing.
For example, scorer = workspace.deployments.scorers(key=value)[index]. The key and value arguments are
optional.

Output:

<class 'h2o_mlops._deployments.MLOpsDeploymentScorer(
api_base_url='https://model.dev.mlops-internal.h2o.dev/822fcf3d-6d4c-4948-a71b-2d0b46db82a9',
capabilities_endpoint='https://model.dev.mlops-internal.h2o.dev/822fcf3d-6d4c-4948-a71b-2d0b46db82a9/model/capabilities',
schema_endpoint='https://model.dev.mlops-internal.h2o.dev/822fcf3d-6d4c-4948-a71b-2d0b46db82a9/model/schema',

104 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

sample_request_endpoint='https://model.dev.mlops-internal.h2o.dev/822fcf3d-6d4c-4948-a71b-2d0b46db82a9/model/sample_request',
scoring_endpoint='https://model.dev.mlops-internal.h2o.dev/822fcf3d-6d4c-4948-a71b-2d0b46db82a9/model/score',

)'>

Deployment scorer properties
A deployment scorer has the following main properties:

• api_base_url: The base URL for all REST API interactions.
• readyz_endpoint: Endpoint for checking if the scorer is ready to receive requests.
• capabilities_endpoint: Endpoint that lists supported scorer capabilities. For more information, see View scorer

capabilities.
• schema_endpoint: Endpoint that returns the input and output schema, including field names and types.
• sample_request_endpoint: Endpoint that returns a sample request payload with placeholder values.
• scoring_endpoint: Endpoint for submitting payloads to get model predictions.
• media_scoring_endpoint: Endpoint for scoring media inputs such as images, audio, or text.
• contributions_endpoint: Endpoint that returns feature contributions (Shapley values), if supported.

Access endpoints
You can use scorer methods to interact with deployment endpoints. Each method that sends a request to an endpoint
accepts the following optional parameters:

• auth_value: Optional[str] = None – The deployment authorization value, such as a passphrase or access token.
Required only if the endpoint is secured. For more information on security options, see Security options.

• timeout: Optional[float] = 5 – The timeout in seconds for the HTTP request.

Note: For the OIDC_AUTH security option, use a valid access token as the authentication value. For example:

import h2o_authn

token_provider = h2o_authn.TokenProvider(
refresh_token=...,
client_id=...,
token_endpoint_url=...,

)
auth_value = token_provider()

H2O MLOps client automatically tries to fetch the access token when none is provided.

View scorer state

To view the scorer’s state:

Input:

scorer.state()

Output:

'Ready'

Check if the scorer is ready

To check if the scorer is ready to receive requests:

Input:

scorer.is_ready()

Output:

True

105 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

View scorer capabilities

To view the scorer’s supported capabilities:

Input:

scorer.capabilities()

Output:

['SCORE_PREDICTION_INTERVAL', 'SCORE']

The available scorer capabilities are:

• SCORE: Enables standard predictions for structured data.
• SCORE_PREDICTION_INTERVAL: Allows returning prediction intervals.
• CONTRIBUTION_ORIGINAL: Supports computing Shapley values for original input features.
• CONTRIBUTION_TRANSFORMED: Supports computing Shapley values for transformed features.
• MEDIA: Accepts media inputs such as images, audio, or text for scoring.
• TEST_TIME_AUGMENTATION: Eligible to apply test-time augmentation and aggregate results.

For more information, see Advanced capabilities.

View schema

To view the input and output schema, including column names and their data types:

Input:

scorer.schema()

Output:

{
'id': '92aa5dee-5b6b-4a28-a19f-0156ae0bde34',
'schema': {

'inputFields': [
{'name': 'Origin', 'dataType': 'Str'},
{'name': 'Dest', 'dataType': 'Str'},
{'name': 'fDayofMonth', 'dataType': 'Str'},
{'name': 'fYear', 'dataType': 'Str'},
{'name': 'UniqueCarrier', 'dataType': 'Str'},
{'name': 'fDayOfWeek', 'dataType': 'Str'},
{'name': 'fMonth', 'dataType': 'Str'},
{'name': 'IsDepDelayed', 'dataType': 'Str'}],

'outputFields': [
{'name': 'Distance', 'dataType': 'Float64'}]}

}

Note: The id in the response identifies the experiment associated with the scorer. This is especially helpful in multi-model
deployments.

Example: View the experiments associated with the deployment.

Input:

deployment.experiments

Output:

| name | uid
---+----------------------+--------------------------------------
0 | H2O3 MOJO experiment | 92aa5dee-5b6b-4a28-a19f-0156ae0bde34

The experiment ID matches the one returned by the scorer.

106 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Generate a sample request

To generate a sample scoring payload with placeholder values:

Input:

scorer.sample_request()

Output:

{'fields': ['Origin',
'Dest',
'fDayofMonth',
'fYear',
'UniqueCarrier',
'fDayOfWeek',
'fMonth',
'IsDepDelayed'],
'rows': [['text', 'text', 'text', 'text', 'text', 'text', 'text', 'text']]}

Create a payload

Here’s an example of a manually defined payload with multiple rows:

payload = {
"fields": [

"Origin", "Dest", "fDayofMonth", "fYear", "UniqueCarrier", "fDayOfWeek", "fMonth", "IsDepDelayed",
],
"rows": [

["text", "text", "text", "text", "text", "text", "text", "text"],
["text", "text", "text", "text", "text", "text", "text", "text"],
["text", "text", "text", "text", "text", "text", "text", "text"],

]
}

Score against the deployment

If the scorer supports the SCORE capability, you can send a payload to score the model:

Input:

scorer.score(payload=payload)

Output:

{'id': '92aa5dee-5b6b-4a28-a19f-0156ae0bde34',
'fields': ['Distance'],
'score': [['713.7770420135266'],
['713.7770420135266'],
['713.7770420135266']]}

Note: The id in the response identifies the experiment associated with the scorer. This is especially helpful in multi-model
deployments.

Advanced capabilities
Prediction intervals

If the scorer supports the SCORE_PREDICTION_INTERVAL capability, you can request prediction intervals by adding the
following flag to the payload:

payload["requestPredictionIntervals"] = True

107 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Shapley values

If the scorer supports the CONTRIBUTION_ORIGINAL or CONTRIBUTION_TRANSFORMED capability, you can request feature
contributions by setting the requestShapleyValueType field in the payload. If the scorer doesn’t support the requested
capability, it returns an error.

Example: >python >payload["requestShapleyValueType"] = "ORIGINAL" >

• ORIGINAL: Returns Shapley values for the original input features.
• TRANSFORMED: Returns Shapley values for the transformed features.

The scorer returns an array of rows containing the requested Shapley values, aligned with the fields specified in the
request.

Note: If you only want feature contributions and not prediction results, use the score_contributions() method instead
of score(). The input arguments are the same.

Media scoring

You can score media inputs, such as text, images, or audio, using either the score() or score_media() method.

Option 1: Use score() with base64-encoded content The score() method expects all media content as base64-
encoded strings.

import base64

with open("/abs/path/to/file", "rb") as f:
encoded = base64.b64encode(f.read()).decode()

payload["rows"] = [[encoded]]

Option 2: Use score_media() with file paths The score_media() method allows you to send raw media files directly
by specifying the file paths.

payload["media_fields"] = ["file"] # This must be a subset of payload["fields"]
payload["rows"] = [["file_name1"], ["file_name2"], ["file_name3"]]

scorer.score_media(
payload=payload,
file_paths=[

"/abs/path/to/file1",
"/abs/path/to/file2",
"/abs/path/to/file3",

],
)

108 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Batch scoring
This page guides you on how to use the H2O MLOps Python client for batch scoring.

For more information about batch scoring and the supported source and sink types, see Batch scoring.

Configure the input source

To list available source connectors, run:

mlops.batch_connectors.source_specs.list()

Use the following code to configure the input source:

Amazon S3

source = h2o_mlops.options.BatchSourceOptions(
spec_uid="s3",
config={

"region": "us-west-2",
"accessKeyID": credentials['AccessKeyId'],
"secretAccessKey": credentials['SecretAccessKey'],
"sessionToken": credentials['SessionToken'],

},
mime_type=h2o_mlops.types.MimeType.CSV,
location="s3:///.csv",

)

Note: Public S3 buckets are also supported as an input sink. To read from the public S3 bucket, leave the access key and
secret key fields empty. Only the input sink allows public S3 buckets.

GCP

source = h2o_mlops.options.BatchSourceOptions(
spec_uid="gcp",
config={

"projectID": credentials['projectID'],
"credentials": credentials['credentials'],

},
mime_type=h2o_mlops.types.MimeType.CSV,
location="",

)

Azure

source = h2o_mlops.options.BatchSourceOptions(
spec_uid="azure",
config={

"accountKey": credentials['accountKey'],
"sasToken": credentials['sasToken'],
"containerName": credentials['containerName']

},
mime_type=h2o_mlops.types.MimeType.CSV,
location="https://.blob.core.windows.net/.csv",

)

MinIO

source = h2o_mlops.options.BatchSourceOptions(
spec_uid="s3",
config={

"region": "us-west-2",
"accessKeyID": credentials['AccessKeyId'],
"secretAccessKey": credentials['SecretAccessKey'],
"sessionToken": credentials['SessionToken'],

109 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

"pathStyle": True,
"endpoint": "https://s3.minio.location"

},
mime_type=h2o_mlops.types.MimeType.CSV,
location="s3:///.csv",

)

JDBC

source = h2o_mlops.options.BatchSourceOptions(
spec_uid="jdbc",
config={
"table": "table_with_data",
"driver": "postgres",
"numPartitions": 8,
"lowerBound": "2023-01-01 00:00:00",
"upperBound": "2024-01-01 00:00:00",
"partitionColumn": "created_at",
"secretParams": {
"username": credentials["username"],
"password": credentials["password"],

}
},
mime_type=h2o_mlops.types.MimeType.JDBC,
location="postgres://h2oai-postgresql.default:5432/db_name?user={{username}}&password={{password}}&sslmode=disable",

)

Configure the output location

To list available sink connectors, run:

mlops.batch_connectors.sink_specs.list()

This command returns schema details, supported paths, and MIME types.

Set up the output location where the batch scoring results will be stored:

Amazon S3

output_location = location="s3:////" + datetime.now().strftime("%Y%m%d-%H%M%S")
sink = h2o_mlops.options.BatchSinkOptions(

spec_uid="s3",
config={

"region": "us-west-2",
"accessKeyID": credentials['AccessKeyId'],
"secretAccessKey": credentials['SecretAccessKey'],
"sessionToken": credentials['SessionToken'],

},
mime_type=h2o_mlops.types.MimeType.JSONL,
location=output_location,

)

GCP

output_location = location="" + datetime.now().strftime("%Y%m%d-%H%M%S")
sink = h2o_mlops.options.BatchSinkOptions(

spec_uid="gcp",
config={

"projectID": credentials['projectID'],
"credentials": credentials['credentials'],

},
mime_type=h2o_mlops.types.MimeType.JSONL,
location=output_location,

)

110 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Azure

output_location = location="https://.blob.core.windows.net//" + datetime.now().strftime("%Y%m%d-%H%M%S")
sink = h2o_mlops.options.BatchSinkOptions(

spec_uid="azure",
config={

"accountKey": credentials['accountKey'],
"sasToken": credentials['sasToken'],
"containerName": credentials['containerName']

},
mime_type=h2o_mlops.types.MimeType.JSONL,
location=output_location,

)

MinIO

output_location = location="s3:///" + datetime.now().strftime("%Y%m%d-%H%M%S")
sink = h2o_mlops.options.BatchSinkOptions(

spec_uid="s3",
config={

"region": "us-west-2",
"accessKeyID": credentials['AccessKeyId'],
"secretAccessKey": credentials['SecretAccessKey'],
"sessionToken": credentials['SessionToken'],
"pathStyle": True,
"endpoint": "https://s3.minio.location"

},
mime_type=h2o_mlops.types.MimeType.JSONL,
location=output_location,

)

JDBC

sink = h2o_mlops.options.BatchSinkOptions(
spec_uid="jdbc",
config={

"driver": "postgres",
"table": "new_table",
"secretParams": {
"username": credentials["username"],
"password": credentials["password"],

}
},
mime_type=h2o_mlops.types.MimeType.JDBC,
location="postgres://h2oai-postgresql.default:5432/db_name?user={{username}}&password={{password}}&sslmode=disable",

)

Create batch scoring job
First, retrieve the scoring runtime for the model:

scoring_runtime = model.experiment().scoring_runtimes[0]

To retrieve a list of available resource specifications for job creation, use:

mlops.batch_connectors.source_specs.list()

and

mlops.batch_connectors.sink_specs.list()

Create the batch scoring job:

job = workspace.batch_scoring_jobs.create(
source=source,

111 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

sink=sink,
model=model,
scoring_runtime=scoring_runtime,
kubernetes_options=h2o_mlops.options.BatchKubernetesOptions(

replicas=2,
min_replicas=1,

),
mini_batch_size=100, #number of rows sent per request during batch processing
name="DEMO JOB",

)

Retrieve the job ID:

job.uid

Wait for job completion
During the execution of the following code, you can view the log output from both the scorer and the batch scoring job.

job.wait()

By default, this command will print logs while waiting. If you want to wait for job completion without printing any logs,
use:

job.wait(logs=False)

List all jobs
workspace.batch_scoring_jobs.list()

Retrieve a job by ID
workspace.batch_scoring_jobs.get(uid=...)

Cancel a job
job.cancel()

By default, this command blocks until the job is fully canceled. If you want to cancel without waiting for completion, use:

job.cancel(wait=False)

Delete a job
job.delete()

112 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Monitoring setup
This guide shows you how to configure monitoring for your deployment using the H2O MLOps Python client.

Follow the steps below to define monitored columns, optionally set up Kafka integration, deploy with monitoring enabled,
or enable or disable monitoring after deployment.

Step 1: Define input and output columns
To enable monitoring in H2O MLOps, you must specify the input and output columns to monitor. You can do this in one
of the following ways:

• Manual configuration
• Automatic configuration

Manual configuration

You can manually define the monitored columns using the MonitoringOptions class:

from h2o_mlops.options import (
BaselineData,
Column,
MissingValues,
MonitoringOptions,
NumericalAggregate,

)
from h2o_mlops.types import ColumnLogicalType

options = MonitoringOptions(
enabled=True,
input_columns=[
Column(

name="age",
logical_type=ColumnLogicalType.NUMERICAL,

),
],
output_columns=[

Column(
name="quantity",
logical_type=ColumnLogicalType.NUMERICAL,
is_model_output=True,

)
],
baseline_data=[

BaselineData(
column_name="AGE",
logical_type=ColumnLogicalType.NUMERICAL,
numerical_aggregate=NumericalAggregate(

bin_edges=[
float("-inf"),
22.0,
23.0,
25.0,
26.0,
28.0,
30.0,
31.0,
float("inf"),

],
bin_count=[0, 1, 3, 1, 2, 2, 3, 3],
mean_value=27.266666666666666,

113 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

standard_deviation=3.2396354880199243,
min_value=22.0,
max_value=31.0,
sum_value=409.0,

),
categorical_aggregate=None,
missing_values=MissingValues(row_count=0),

),
],

)

Automatic configuration

You can also configure monitoring automatically. This method can calculate the baseline using PySpark.

Note: PySpark is required for this step.

from h2o_mlops.types import ColumnLogicalType
from h2o_mlops.utils.monitoring import (

Format,
get_spark_session,
prepare_monitoring_options_from_data_frame,
read_source,

)

session = get_spark_session()

baseline_data_frame = read_source(
spark=session,
source_data="file:///datasets/categorical_data.csv",
source_format=Format.CSV,

)

User is able to override logical type for column for example ID column
logical_type_overrides = {

"id": ColumnLogicalType.ID,
}

Experiment is optional and base on schema in experiment code is able to discover proper types for monitoring
options = prepare_monitoring_options_from_data_frame(

data_frame=baseline_data_frame,
logical_type_overrides=logical_type_overrides,
experiment=experiment,

)

options.enabled = True

Step 2: Optional: Kafka integration for raw scoring logs
You can enable the export of raw scoring request and response data to Kafka, if it is enabled in the environment. You can
use a global topic or specify a custom topic per deployment.

options.kafka_topic = "test"

Step 3: Edit baseline and columns before deployment
You can modify the automatically detected baseline and monitored columns before deployment if the detection was
inaccurate.

To modify the logical type of an existing column:

options.input_columns[0].logical_type = ColumnLogicalType.CATEGORICAL

114 © 2024 H2O.ai, Inc. All rights reserved.

https://spark.apache.org/docs/latest/api/python/index.html

H2O MLOps Version v1.0.0

To replace an entire column definition:

options.input_columns[0] = Column(
name="width",
logical_type=ColumnLogicalType.NUMERICAL,

)

Step 4: Configure monitoring for deployment
You can deploy a model with monitoring enabled, or enable or disable monitoring after deployment.

Deploy with monitoring enabled

To deploy with monitoring enabled:

deployment = workspace.deployments.create(
name="demo-deployment",
composition_options=[comp_opts],
mode=DeploymentModeType.SINGLE_MODEL,
monitoring_options=options,
security_options=sec_opt,

)

Enable or disable monitoring after deployment

You can enable or disable monitoring after deployment as long as the monitored columns were provided. If they weren’t,
you must configure them first with the monitoring_options configuration.

To disable monitoring if it was already configured:

options = deployment.monitoring_options
options.enabled = False
(monitoring_options=options)

To enable monitoring when it wasn’t configured at deployment time:

First, define the monitored columns using manual or automatic configuration.
For more information, see Step 1: Define input and output columns. Then:

options = deployment.monitoring_options
options.enabled = True
deployment.update(monitoring_options=options)

115 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Python client migration guide
This guide compares the H2O MLOps Python client across versions. Each table shows how to perform an operation in the
earlier version (left column) and in the later version (right column). Use these comparisons to update your code.

From v1.3.x to v1.4.x
Imports

v1.3.x

v1.4.x

Client creation

From v1.4.x onwards, support for creating the client using gateway_url and token_provider has been removed. Instead,
you must use refresh_token and h2o_cloud_url.

v1.3.x

v1.4.x

token_provider = h2o_authn.TokenProvider(
refresh_token=...,
client_id=...,
token_endpoint_url=...,

)
mlops = h2o_mlops.Client(

gateway_url=...,
token_provider=token_provider,

)

mlops = h2o_mlops.Client(
h2o_cloud_url=<H2O_CLOUD_URL>,
refresh_token=<REFRESH_TOKEN>,

)

Get allowed afÏnities and tolerations

v1.3.x

v1.4.x

mlops.allowed_affinities
```

</td>
<td>

```python
mlops.configs.allowed_k8s_affinities
```

</td>
</tr>
<tr>

<td>
```python
mlops.allowed_tolerations
```

</td>
<td>

```python
mlops.configs.allowed_k8s_tolerations

116 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

```
</td>

</tr>
</table>

### Get the current user

<table>
<tr>
<th>v1.3.x</th>
<th>v1.4.x</th>
</tr>
<tr>

<td>
```python
mlops.get_user_info()
```
</td>
<td>
```python
mlops.users.get_me()
```
</td>

</tr>
<tr>

<td>
Returns the user's information as a Python dictionary.
</td>
<td>
Returns the user's information as an `MLOpsUser` instance.
</td>

</tr>
</table>

### Access project-related services

In version 1.4.x, the concept of *projects* has been replaced by *workspaces*. Update your code by replacing references to `projects` with `workspaces`.

<table>
<tr>
<th>v1.3.x</th>
<th>v1.4.x</th>
</tr>
<tr>
<td>
```python
mlops.projects.<action>()

mlops.workspaces.<action>()

Create and register an experiment into a model

The previous method of creating experiments and registering them with models is still supported.

v1.3.x

v1.4.x

experiment = project.experiments.create(
data=..., name=...

117 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

)

model = project.models.create(name=...)

or

model = project.models.get(uid=...)

model.register(experiment=experiment)

model.register(
experiment="/path/experiment.zip",
name=...,

)

or

workspace.models.register(
experiment="/path/experiment.zip",
name=...,

)

Users can pass an instance of the MLOpsExperiment as well.

Note:

• When you link an experiment to a workspace from H2O Driverless AI, a new model version is automatically registered
under the model that matches the experiment’s name.

• If no matching model exists, a new model is created with the experiment name, and the experiment is registered as
its first version.

• Therefore, you don’t need to manually register experiments in MLOps. You can use the model directly.

Update an artifact’s parent

v1.3.x

v1.4.x

artifact.update(
parent_experiment=experiment,

)

artifact.update(
parent_entity=experiment,

)

Get artifact’s model-specific metadata (if applicable)

v1.3.x

v1.4.x

artifact.get_model_info()

artifact.model_info

Convert JSON artifact to a dictionary

v1.3.x

v1.4.x

artifact.to_dictionary()

artifact.to_dict()

118 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Get the experiment associated with a model version

v1.3.x

v1.4.x

model.get_experiment(model_version=n)

model.experiment(model_version=n)

List scoring runtimes

The experiment.scoring_artifact_types property was removed in 1.4.x.

v1.3.x

v1.4.x

scoring_runtimes = mlops.runtimes.scoring.list(
artifact_type=experiment.scoring_artifact_types[correct_index]

)

scoring_runtimes = experiment.scoring_runtimes

scoring_runtimes = mlops.runtimes.scoring.list(
artifact_type=..., uid=...

)

scoring_runtimes = mlops.runtimes.scoring.list(
artifact_type=..., runtime_uid=...

)

Note: When creating a deployment, instead of passing scoring_runtimes[correct_index], you can use
mlops.runtimes.scoring.get(artifact_type=..., runtime_uid=...) to get the scoring_runtime, if you already
know the corresponding artifact_type and runtime_uid.

Create a deployment

v1.3.x

v1.4.x

project.deployments.create_single(
name=...,
model=...,
scoring_runtime=...,
security_options=options.SecurityOptions(

passphrase=...,
hashed_passphrase=...,
disabled_security=...,
oidc_token_auth=...,

),
)

workspace.deployments.create(
name=...,
composition_options=options.CompositionOptions(

model=...,
scoring_runtime=...,

),
security_options=options.SecurityOptions(

security_type=types.SecurityType.<TYPE>,
passphrase=...,

),
)

119 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Note: Starting in v1.4.x, when you create a deployment with hash-based security options, provide the passphrase directly.
In earlier versions, you had to provide the hashed value instead.

Create a deployment with new model monitoring options

v1.3.x

v1.4.x

project.deployments.create_single(
...,
monitoring_record_options=options.MonitoringRecordOptions(

...,
),

)

workspace.deployments.create(
...,
monitoring_options=options.MonitoringOptions(

...,
),

)

Note: This is equivalent to how users created deployments with the old monitoring in the previous client. After the old
monitoring was removed, this change was introduced. Note that the parameters accepted by options.MonitoringOptions
differ from those used in the old monitoring.

Wait for deployment to become healthy

The previous method is still supported.

v1.3.x

v1.4.x

while not deployment.is_healthy():
deployment.raise_for_failure()
time.sleep(5)

deployment.wait_for_healthy()

Get deployment state

v1.3.x

v1.4.x

deployment.status()

deployment.state

deployment.is_healthy()

deployment.is_healthy

Update a deployment

v1.3.x

v1.4.x

```python
deployment.update_security_options(

...,
)
```

120 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

```python
deployment.update(

security_options=options.SecurityOptions(
...,

),
kubernetes_options=options.KubernetesOptions(

...,
),
environment_variables={

"KEY1": "VALUE1",
"KEY2": "VALUE2",

},
monitoring_options=options.MonitoringOptions(

...,
),

)
```

```python
deployment.update_kubernetes_options(

...,
)
```

```python
deployment.set_environment_variables(

environment_variables={
"KEY1": "VALUE1",
"KEY2": "VALUE2",

},
)
```

```python
deployment.update_monitoring_options(
...,
)
```

Note: In v1.4.x, you can update multiple settings at once.

Access deployment scorer

v1.3.x

v1.4.x

You do not need to fetch the scorer.

```python
scorer = deployment.scorer

or

scorer = workspace.deployments.scorers(
key=value,

)[index]
```

deployment.scorer_api_base_url

scorer.api_base_url

deployment.url_for_capabilities

121 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

scorer.capabilities_endpoint

deployment.url_for_schema

scorer.schema_endpoint

deployment.url_for_sample_request

scorer.sample_request_endpoint

deployment.url_for_scoring

scorer.scoring_endpoint

deployment.get_capabilities(...)

scorer.capabilities(...)

deployment.get_schema(...)

scorer.schema(...)

deployment.get_sample_request(...)

scorer.sample_request(...)

Score against a deployment

The previous method is still supported if the correct scoring endpoint URL is provided.

v1.3.x

v1.4.x

response = httpx.post(
url=deployment.url_for_scoring,
json=...,

)

response.json()

scorer.score(payload=...)

Kubernetes options for a batch scoring job

v1.3.x

v1.4.x

project.batch_scoring_jobs.create(
...,
resource_spec=options.BatchKubernetesOptions(

...,
),

)

workspace.batch_scoring_jobs.create(
...,
kubernetes_options=options.BatchKubernetesOptions(

...,
),

)

job.resource_spec

job.kubernetes_options

122 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Get entity creator (if applicable)

v1.3.x

v1.4.x

entity.owner

entity.creator

View the complete Table

v1.3.x

v1.4.x

table

table.show(n=...)

Note: In version 1.4.x, a Table instance renders a nicely formatted view but displays only up to 50 rows by default.

From v1.2.x to v1.3.x
Removal of environments

v1.2.x

v1.3.x

environment = project.environments.get(uid=...)

You do not need to fetch the environment.

environment.deployments

project.deployments

environment.endpoints

project.endpoints

environment.allowed_affinities

mlops.allowed_affinities

environment.allowed_tolerations

mlops.allowed_tolerations

From v1.1.x to v1.2.x
There are no breaking changes.

From v1.0.x to v1.1.x
Minimal supported version

v1.0.x

v1.1.x

3.8

3.9

123 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Create a deployment

v1.0.x

v1.1.x

project.deployments.create_single(
name=...,
model=...,
scoring_runtime=...,

)

project.deployments.create_single(
name=...,
model=...,
scoring_runtime=...,
security_options=options.SecurityOptions(

passphrase=...,
hashed_passphrase=...,
disabled_security=...,
oidc_token_auth=...,

),
)

Note:

• The security_options field is no longer optional.
• To create a deployment with the No Security option:

• For MLOps version 0.68.0 or later, set:
security_options = options.SecurityOptions(disabled_security=True)

• For MLOps versions earlier than 0.68.0, set:
security_options = options.SecurityOptions()

124 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

H2O MLOps gRPC Gateway
The H2O MLOps gRPC Gateway provides a unified interface for interacting with the H2O MLOps platform’s various
services. This gateway serves as the entry point for all API operations, allowing you to manage models, deployments,
monitoring, and other MLOps functionalities through a standardized API. To view the API specifications, open the H2O
MLOps gRPC Gateway URL in a browser.

Note: If you’re unsure how to access the H2O MLOps gRPC Gateway, contact your administrator.

API information
H2O MLOps uses gRPC (Google Remote Procedure Call) as its internal communication framework. The platform’s
services are exposed using gRPC Gateway. The services are not accessible directly, but instead the platform follows the
API Gateway pattern and uses a gateway service to contact individual services.

API gateway health check
The API gateway includes a health check endpoint that is accessible at /healthz. Navigate to
<H2O_MLOPS_API_GATEWAY_URL>/healthz for the health check.

Sample output:

{
"deployment_server": {

"message": "READY",
"timestamp": "2025-06-16T17:52:32.855902715Z",
"duration": 1260,
"contiguousFailures": 0,
"timeOfFirstFailure": null

},
"ingest": {

"message": "READY",
"timestamp": "2025-06-16T17:52:32.857480851Z",
"duration": 951,
"contiguousFailures": 0,
"timeOfFirstFailure": null

},
"storage": {

"message": "READY",
"timestamp": "2025-06-16T17:52:32.858571077Z",
"duration": 360,
"contiguousFailures": 0,
"timeOfFirstFailure": null

}
}

125 © 2024 H2O.ai, Inc. All rights reserved.

https://github.com/grpc-ecosystem/grpc-gateway#grpc-gateway

H2O MLOps Version v1.0.0

Release notes
Version 1.0.0 (July 31, 2025)
This release marks a significant milestone in the evolution of H2O MLOps. It introduces the following major changes:

• The legacy Wave-based UI and Admin Analytics app have been replaced by the unified H2O AI Cloud user interface.
• A fully featured and user-friendly Python client is now available, replacing the previously generated client.
• The Deployer component has been rewritten to address previous architectural limitations.
• A new monitoring solution has been added, based on aggregated data and Apache Superset.

See the full release notes below for a complete list of new features, and fixes.

New Features

• Introduced a new native user interface that replaces the legacy H2O Admin Analytics Wave app and the H2O MLOps
Wave app.

• Added a new model monitoring solution based on aggregated data and Apache Superset. To learn more, see Model
monitoring.

• Added support for using CSV files with headers as sink (input) for batch scoring jobs. For configuration details,
see Batch scoring.

• Enabled support for using a public S3 bucket as the source for batch scoring jobs.
• Integrated H2O MLOps with H2O AI Cloud’s Authz service for authorization control.
• Integrated H2O MLOps with H2O AI Cloud’s Workspace service. All projects have been migrated to Workspaces.
• Integrated H2O MLOps with H2O AI Cloud’s User service.
• Added the ability to manually retry failed deployments.
• Added support for AWS_MSK_IAM and SCRAM Kafka authentication methods.
• Added support for forwarding input scoring data to customer-specific Kafka topics.
• Integrated H2O MLOps with the Audit Trail component. All API interactions from H2O MLOps components are

captured and sent to the Audit Trail service for processing. Users can view the collected data in the Audit Trail UI.
• Upgraded the MOJO library used in runtimes to version 2.8.9.1.
• Added support for H2O Driverless AI runtimes:

• 1.10.7.4
• 1.10.7.5
• 2.2.3

• Added support for specifying security contexts for all dynamically created pods, including batch scoring jobs, artifact
fetchers, proxies, and runtimes.

• Added support for specifying afÏnity and tolerations in batch scoring jobs.
• Introduce competition statistics for batch scoring jobs.
• Introduce startup timeout option for batch scoring jobs and associated scorers.

Fixes

• Applied security fixes across all components.
• Allowed additional input fields beyond the expected schema in batch scoring jobs.
• Resolved Azure download timeout errors when Azure is used as the data source in batch scoring jobs.
• Added support for table names with special characters when using JDBC as the data source in batch scoring jobs.
• Fixed a segmentation fault that occurred during batch scoring when GCP was used as the data source.
• Corrected the supported MIME types for JDBC output sinks.
• Deployments are no longer processed sequentially.
• Prevented segmentation faults caused by concurrent hash generation in the security proxy component.
• Instead of failing whole batch scoring jobs when scoring fails, write the affected entry to error file and continue.

Python client v1.4.4

Fixes

• Ensured that an isolated httpx client with a limited connection pool is used internally for native scorer support.

Python client v1.4.3

New features

126 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

• Exposed configurable API timeout settings.

Fixes

• Prevented retrieval of large experiment and dataset metadata by allowing retrieval based on user inputs only.

Python client v1.4.2

Fixes

• Added support for accepting job_start_timeout when creating batch scoring jobs.

Python client v1.4.1

Fixes

• Added support for initializing the client by passing token_provider along with h2o_cloud_url.

Python client v1.4.0

New features

• Released the ofÏcial H2O MLOps Python client (h2o-mlops), available on PyPI, which fully replaces the previously
generated Python client. The generated client is no longer supported. For usage details, see H2O MLOps Python
client.

• Added native support for accessing common scorer endpoints.

Removed features

• Removed gateway_url and token_provider from Client constructor. Users should use h2o_cloud_url instead.

Version 0.70.7 (May 30, 2025)
New Features

• Added support for the Scoring Runtime in H2O Driverless AI 2.1.0

Version 0.70.6 (May 29, 2025)
Fixes

• Python Client Unpinned Python package dependencies.
• [Wave UI] Fixed security vulnerabilities.

Version 0.70.5 (Apr 25, 2025)
Fixes

• Fixed an issue where batch scoring jobs failed when Azure was used as the input data source.

Version 0.70.4 (Apr 8, 2025)
Fixes

• [Deployer] Added missing service accounts to existing deployments during deployment updates.

Version 0.70.3 (Apr 3, 2025)
Fixes

• Fix deployer memory leak

127 © 2024 H2O.ai, Inc. All rights reserved.

https://pypi.org/project/h2o-mlops/

H2O MLOps Version v1.0.0

Version 0.70.2 (Apr 3, 2025)
Fixes

• Ensured that the Driverless AI Scoring Pipeline does not run under the root user.
• Resolved regression that prevented scoring on the Java runtime by upgrading to the latest MOJO library.
• Fixed an issue where the Storage connection was incorrectly closed in the deployment server.

Version 0.70.1 (Mar 31, 2025)
New Features

• [Runtimes] Added support for H2O Driverless AI v2.0.0.

Fixes

• Added missing component versions to Go-based H2O MLOPs components.
• Batch Scoring Added missing security context to batch scoring job pods.
• [Security] Fixed newly discovered vulnerabilities.
• [Deployer] Added missing access token for the readArtifactAsAdmin operation.
• [Helm] Added configuration to refresh intervals for JWKS keys in service-to-service authentication. This ensures

timely updates, regardless of Cache-Control headers.

Version 0.70.0 (Mar 13, 2025)
New features

• Added support for Workload Identity in all MLOPs components.
• Enabled IAM support across all MLOps components.
• Replaced SPIFFE with service accounts for service-to-service authentication.
• Removed the custom TLS implementation. Users are encouraged to use a service mesh, such as Istio, to secure

in-cluster communication.
• Introduced native Batch Scoring implementation. Users can access this capability through the Python client and the

new user interface.
• Launched a new user interface that runs alongside the existing one for the upcoming release.
• [Helm] Moved global CORS configuration to Helm.

Fixes

• Fixed vulnerabilities across all MLOps components.
• [Storage] Updated to return a Not Found gRPC error code when a dataset cannot be found in the storage database.
• [Monitor Proxy] Updated to pass secrets instead of plain text for Kafka credentials.
• [Helm] Fixed automatic cleanup of the updater job.
• [Wave UI] Prevented redirection to projects while filling out the Create deployment form.

Version 0.69.7 (Feb 17, 2025)
Fixes

• [Deployer] Resolved an issue where resource limit specifications were not correctly applied to runtime processors.

Version 0.69.6 (Feb 13, 2025)
Fixes

• [Security] Applied security patches from the latest major release.
• [Deployer] Fixed an issue by adding the missing volume mount for Kafka TLS-enabled deployments.

Version 0.69.5 (Feb 6, 2025)
Fixes

• [Wave App] Prevented redirection to #projects while filling out the create deployment form.

128 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Version 0.69.4 (Jan 21, 2025)
Fixes

• [Helm Chart] Updated the InfluxDB network policy to allow connections from pods with any of the required labels.

Version 0.69.3 (Jan 17, 2025)
Fixes

• [Wave UI] Fixed an issue where Driverless AI version 1.11.1.1 was incorrectly displayed as 1.11.1 in the UI.

Version 0.69.2 (Jan 14, 2025)
This release includes new features and fixes.

New features

• [Deployment Updater] Added functionality to update the image repository during deployment update jobs.

Fixes

• [Deployer] Fixed CVE-2023-3635.

Version 0.69.1 (Jan 9, 2025)
This release includes a new feature.

New features

• [Runtimes] Added support for the Driverless AI runtime version 1.11.1.1.

Version 0.69.0 (Dec 19, 2024)
This release includes new features and fixes.

New features

• [Runtimes] Added support for MLflow Model Scorer runtime for Python 3.11 and 3.12, and Dynamic MLflow Model
Scorer runtime for Python 3.12.

• [Runtimes] Added support for H2O Driverless AI runtime version 1.10.7.3.
• [Runtimes] Exposed Kubernetes readiness probe on deployments.
• [UI] Replaced bcrypt with PBKDF2 hashing when creating deployments with the Passphrase (Stored Hashed)

security option.
• [Deployer] Introduced PBKDF2-based passphrase hashing for improved security.
• [Deployer] Added support for Generic Ephemeral Volumes in the Runtimes.
• [Deployer] Introduced /readyz readiness probe endpoint for dynamically deployed runtimes.
• [Deployer] Introduced a pod disruption budget for enhanced stability.
• [Helm] Enabled JVM config passing to the monitoring proxy.
• [Helm] Added support for configuring limits and JVM settings in the deployer.
• [Helm] Defined MLOPS_WAVE_APP_URL as an environment variable for better configuration.

Fixes

• [UI] Ensured UI accessibility even when listing deployments fails.
• [UI] Fixed the issue where signing in from the access denied page resulted in an Missing parameters:

id_token_hint error.
• [Monitor Proxy] Stopped sending TransactionTransmission events to downstream transmitters when

enableTransaction is false.
• [Storage] Removed storage cleanup cron job and implemented it within a thread of storage itself.
• [Helm] Ensured proper RBAC configuration when multiple groups are specified.
• [Helm] Removed legacy LOCAL and MIGRATE mode code.

129 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

• [Runtimes] Fixed memory leak in MOJO2 runtimes by upgrading the internal MOJO2 library.
• [Deployer] Ensured that stale deployments will be redeployed.
• [Deployer] Skipped routing migration in cases of errors not related to deployment migration.
• [Deployer] Used response header modifier instead of request header modifier for CORS.
• [Deployer] Added configurable Kubernetes client timeout for better performance and reliability.

Python client v1.2.0

New features

• Added support for SSL settings via the Client constructor.
• Added support for PBKDF2 hashed security option.

Fixes

• Added ValueError for missing or invalid protocol in the gateway URL.
• Configured SSL settings for the functions get_capabilities, get_sample_request, and get_schema since they

access deployment endpoints.

Version 0.68.0 (Nov 05, 2024)
This release includes new features and fixes.

New features

• [UI] Enabled model and model version deletion.
• [UI] Enabled to use the default deployment security option from the backend.
• [UI] Added support for H2O Driverless AI runtime versions 1.10.7.2 and 1.11.1.
• [Storage] Storage only supports blob storage from this release onwards. A one-time migrator job was introduced to

migrate all the storage data from K8S PVC to blob storage to support seamless upgrades for users.
• [Telemetry] The MLOps-Telemetry component is no longer running as a cron job; it is now a long-running microservice

that publishes event data at scheduled intervals.
• [Helm] MLOps storage can be configured to use blob storages from any of the 3 main clouds AWS, Azure and GCP.

Minio is also supported for on-premise installations.
• [Helm] Added H2O_SCORER_MODEL_LOADING_MODE set to “subprocess” across all MLOps Python-based runtimes.
• [Helm] Introduced a migration job for transferring persistent storage to cloud platforms, now supporting Minio and

Azure Blob.
• [Helm] Introduced a SCHEDULER_INTERVAL_SECONDS environment variable to configure the interval of mlops-telemetry

events publishing.
• [Deployer] Introduced Vertical Pod Autoscaling (VPA) support.
• [Deployer] Exposed easy access to the security options available in the cluster.
• [Deployer] Restructured environment security options:

• Activated security options list
• Configurable default security option

• [Deployer] Introduced the No-Security option.

Fixes

• [UI] Resolved an error occurring when attempting to view experiment details for experiments with missing metadata.
• [UI] Made the maximum selectable count for deployment replicas configurable.
• [UI] Removed support for MLflow Model Scorer and Dynamic Model Scorers for Python 3.8.
• [UI] Removed support for HT Flexible Runtimes for Python 3.8, including both GPU and CPU variants.
• [gRPC Gateway] Updated /healthz to return a 200 status if at least one health check passes, fixing an issue where

the gateway would restart if any service was unhealthy.
• [Helm] Removed Python 3.8 support for HT and MLFlow runtimes.
• [Helm] Removed the EnableUserExternalIDUpdate environment variable from storage for simpler configuration.
• [Helm] Added a -job sufÏx to the app.kubernetes.io/component label for the monitoring backend job to improve

component labeling.
• [Helm] Updated rclone configurations to enhance compatibility with Google Cloud Storage (GCS).
• [Helm] Set the telemetry service’s replica count to one to optimize resource usage.
• [Helm] Changed the telemetry scheduler’s default interval to 300 seconds for more efÏcient scheduling.

130 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

• [Storage] IDP_ID (i.e. keycloak/ Okta ID) is now used as the primary key for the Users table in MLOps Storage.
The username is also not a unique field anymore. Existing user data will be migrated accordingly by the Storage
itself when it’s spinning up. [Deployer] Only “internal” grpc status are now logged at the ERROR level.

Python client v1.1.2

New features

• Introduced two SSL settings (verify_ssl and ssl_cacert) that can be configured via the Client Constructor to
improve certificate security.

Python client v1.1.0

New features

• Introduced a timeout parameter (default: 5 seconds) for MLOpsScoringDeployment’s methods: get_capabilities,
get_sample_request, and get_schema.

• Added support for creating deployment with token-based authentication as a security option.
• Enabled model deletion.
• Enabled the option to unregister an experiment from a model.
• Introduced the disabled_security option to manage deployments with No-Security.

Fixes

• Improved handling of missing deployment attributes (security and monitor) in backend responses.
• Upgraded the minimum supported Python version to 3.9.

Python client v1.0.1

Fixes

• Improved handling of missing deployment attributes (security and monitor) in backend responses.

Version 0.67.4 (Oct 10, 2024)
This release includes various fixes.

Fixes

• [Helm] Gateway creation is now skipped when Values.gatewayApi.create is set to false.
• [Helm] You can now specify extra ingress for Influx.

Version 0.67.3 (Oct 01, 2024)
This release includes new features and fixes.

New features

• [Runtimes] Added support for the Driverless AI 1.11.1 Python scoring pipeline.

Fixes

• [Security] Fixed critical vulnerabilities on Java-based rest scorer and monitoring proxy.
• [Helm] Ensure that registry specification on each image has higher priority over the global image registry configuration.

Version 0.67.2 (Sep 19, 2024)
This release includes new features and fixes.

New features

• [Runtimes] Added support for the Driverless AI 1.10.7.2 Python scoring pipeline.

131 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Fixes

• [Helm] Removed hard-coded dev/vorvan prefix.
• [Helm] Influx network policy was missing a specific label which lead to cleanup job not running.

Version 0.67.1 (Sep 13, 2024)
This release includes various fixes.

Fixes

• [Monitoring Backend] Updated Dockerfile to use numerical user ID, preventing false warnings in systems that check
for root access.

• [Drift] Fixed an issue where the worker image could not find the datatable dependency.

Version 0.67.0 (Sep 02, 2024)
This release includes various vulnerability fixes.

New features

• [Monitor Proxy] Per project monitoring data retention period can be set for Influx DB during the MLOps installation
or upgrade.

• [UI] Added the functionality to log out from the Wave app.
• [UI] Added support for new HT Flexible Runtimes for Python 3.10, including GPU and CPU variants.
• [UI] Added support for DAI runtime versions 1.10.6.3, 1.10.7.1, and 1.11.0.
• [UI] Added support for MLflow Model Scorer and Dynamic Model Scorers for Python 3.10 and 3.11.
• [Deployer] Added support for token based authentication for deployments.
• [Runtimes] Added support for DAI runtime versions 1.10.6.3, 1.10.7.1, and 1.11.0.
• [Runtimes] Added support for new HT Flexible Runtimes for Python 3.10.
• [Helm Chart] Added component configuration support for applying tolerations, node selectors, and afÏnity settings

to cron jobs.
• [Helm Chart] Added CA certificate support to the API Gateway deployment.
• [Helm Chart] Replaced Ambassador with Gateway API due to the removal of Emissary.

Fixes

• [UI] Removed the functionality for importing models from external model repositories.
• [UI] Removed the ability to upload experiments as serialised Python (.pkl/.pickle) files.
• [UI] Disallowed the creation of tags with commas.
• [UI] Reduced the timeout for notification bars.
• [UI] Fixed the issue where a red cross appeared when registering a model shortly after creating an experiment.
• [UI] Removed support for DAI Python runtimes for 1.10.4.3 and older versions.
• [UI] Removed support for MLFlow Model Scorer for Python 3.6 and Python 3.7.
• [Runtimes] Removed support for DAI Python runtimes for 1.10.4.3 and older versions.
• [Runtimes] Fix critical vulnerabilities in all runtimes except DAI Python based one.
• [Runtimes] Fix critical and high vulnerabilities in rest scorer.
• [Helm Chart] Corrected the nodeSelector YAML formatting.
• [Helm Chart] Renamed environment variable STORAGE_URL to API_GATEWAY_URL in the Wave app.
• [Helm Chart] Updated H2O_WAVE_POST_REDIRECT_URL to resolve “Page Not Found” errors when logging out from

the Wave app.
• [Helm Chart] Updated the Wave app secret H2O_WAVE_OIDC_END_SESSION_URL for improved logout functionality.
• [Helm Chart] The enable_user_externalid_update setting is now configurable.
• [Helm Chart] Exposed resource requests and limits for monitoring-drift, model-ingest, and api-gateway components.

Python client v1.0.0

Removed features

• The external_registry package has been removed.

132 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Version 0.66.1
This release includes various vulnerability fixes.

New features

• Released Base Python Scorer v1.2.0 (BYOM).

• Released Python based runtimes v1.2.0 (BYOM).

• Released HT runtime v1.2.0 (BYOM).

• Released MLflow runtime v1.2.0 (BYOM).

Version 0.66.0 (June 04, 2024)
This release includes new features, improvements, bug fixes, and security improvements.

Announcement This version of H2O MLOps adds optional role-based access control (RBAC). This feature relies on
two RBAC configurations: one for the front end (FE) and the other for the back end (BE). When using RBAC, both
configurations must be set up identically to ensure proper functionality and a seamless user experience.

The following is an illustrative configuration for both FE and BE RBAC. Note that in this example, it is assumed that
“admin” is included in the user access token groups claim. However, it is important to customize this configuration based
on your specific requirements at the time of deployment.

apiGateway:
config:
-- Log verbosity.
logLevel: "debug"
authorization:
-- Whether authorization is enabled.
enabled: true
-- JWT claim key which contains the role/group information.
userJwtClaim: "groups"
-- List of role/group values that should have access to MLOps API Gateway as an array.
allowedUserRoles: ["admin"]

waveApp:
authorization:
-- Whether authorization is enabled.
enabled: true
-- JWT claim key which contains the role/group information.
userJwtClaim: "groups"
-- Comma separated list of role/group values that should have access to MLOps FE.
allowedUserRoles: "admin"
-- Separator character for role/group values in JWT claim.
userRoleValueSeparator: ",

New features

• Added optional role-based access control (RBAC). You can now limit access to H2O MLOps APIs to users with
specific roles.

• Released Base Python Scorer v1.1.1 (BYOM).

• Released Python-based runtimes v0.6.5 (BYOM).

• Released HT runtime v0.6.5 (BYOM).

• Released MLflow runtime v0.6.5 (BYOM).

• Exposed authorization header with bear token through Env Vars in base scorer (BYOM).

• You can now set configurable read time out in scorer proxy (Monitor Proxy)

• Added deployer configurable monitor proxy timeout ()Deployer)

133 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

• Upgraded base images to Java 17 eclipse-temurin:17.0.10_7-jre (Deployer)

Bug fixes

• Handle error while fetching additional details of the events related to an experiment after deleting a deployment.

Version 0.65.1 (May 25, 2024)
This release is a minor release on top of v0.65.0 with the storage and telemetry features rebuilt using the latest zlib.

Python client v0.65.1a3

Fixes

• vLLM Configuration artifacts not being uploadable because of a missing target column.

Note: vLLM Configuration artifacts are a preferred alternative to using MLflow to create vLLM artifacts.

Python client v0.65.1a2

Fixes

• Failures when a deployment is missing Kubernetes options.

Python client v0.65.1a1

New features

• Ability to disable storage of scored data when monitoring is enabled. For more information, see Monitoring options.

Changes

• Use H2O MLOps 0.65.1 backend.

Version 0.65.0 (May 08, 2024)
This release includes new features, improvements, bug fixes, and security improvements.

New features

• Added the capability to disable model monitoring features when deploying H2O MLOps. Set the monitoring_enabled
installation parameter to false to disable the following:

• monitoring service

• monitoring task

• drift worker

• drift trigger

• InfluxDB

• RabbitMQ

• Note: that setting the monitoring_enabled parameter to false also disables health checks for the monitoring
backend.

• Support for FEDRAMP compliance.

• Added an option to restrict model imports to specific types.

• Added support for vLLM config model types.

• When creating a deployment, added a deployment multi-issuer token security option. For more information, see
Endpoint security.

• The ListProjects API now returns all projects for admin users.

134 © 2024 H2O.ai, Inc. All rights reserved.

https://www.fedramp.gov/

H2O MLOps Version v1.0.0

• You can now set a specific timeout only for external registry import API.

• You can now upload LLM experiments using the MLOps Wave app.

• Added support for Authz user format.

Improvements

• By default, the model monitoring page is now sorted by deployment name.

• You can now configure the supported experiment types for the upload experiment flow.

Bug fixes

• Fixed incorrect sorting in the listMonitoredDeployments API response.

Version 0.64.0 (April 08, 2024)
New features

• MLflow Dynamic Runtime: Added support for Python 3.10.

• Added support for DAI 1.10.7 and 1.10.6.2 runtimes.

• Upgraded Rest scorer to Spring Boot 3 (1.2.0).

• Added vLLM runtime support.

• When creating a new deployment, added an option to disable monitoring for the deployment.

• Added validation for experiment file uploading.

• Extended scoring API with new endpoint /model/media-score to support uploading multiple media files.

• The H2O Hydrogen Torch runtime is now supported with the ability to score image and audio files against the new
endpoint /model/media-score.

• The project page now includes an Events tab with pagination, search, and sorting.

• You can now delete experiments.

• Added pagination, search, sorting, and filtering by Tag on the Experiments page.

• The Create Deployment workflow now automatically populates K8s limits and requests with the suggested default
settings.

• The deployment state is now updated dynamically on the Deployments page.

• Additional details about error deployment states are now displayed in the MLOps UI.

• You can now update and delete tags. Note that tags can only be deleted if they are not associated with any entity.

Improvements

• You can now edit the GPU request/limit fields.
• When creating a deployment, improved automatic population of the Kubernetes resource requests and limits fields in

the UI based on the selected runtime and artifact type.
• H2O Driverless AI versions are now automatically identified when DAI models are uploaded through the Wave app

or Python client.
• The deployment overview now displays additional details about errored deployment states.

Python client v0.64.0a2

New features

• Ability to set environment variables in the scoring runtime of a new or existing deployment.

135 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Python client v0.64.0a1

Changes

• Use H2O MLOps 0.64.0 backend.

Version 0.62.5
In addition to the changes included in the 0.64.0 release, this release includes the following changes:

Improvements

• The Deployer API now lets you create and update deployment settings related to what monitoring data you want to
save. For example:

deployment.monitor_disable = True
deployment.store_scoring_transaction_disable = True
deployment = mlops_client.deployer.deployment.update_model_deployment(

mlops.DeployUpdateModelDeploymentRequest(deployment=deployment)
)

Changes

• Model Monitoring is now disabled by default for new deployments.

Known issues

• Monitoring settings can only be modified using the Python client, regardless of whether they were initially set via
the UI or Python client.

• H2O MLOps version 0.62.5 cannot be upgraded to version 0.64.0. Upgrades from this version can only be made to
version 0.65.0 and later.

Version 0.62.4
Improvements

• Various security improvements to address XSS security issues.

Version 0.62.1
New features

• You can now use the ListExperiments API to filter experiments by status (ACTIVE, DELETED). By default, the
API returns ACTIVE experiments.

Improvements

• Added support for the DAI 1.10.6.1 runtime.

• Added pagination support in the Experiments page.

Bug fixes

• Fixed an issue where uploading large artifacts (above 40GB) resulted in an error.

• Fixed an issue where a registered model with the same name as a deleted model could not be created.

Announcements

• The URL link to the legacy H2O MLOps app has been removed.

• The legacy H2O MLOps app is no longer installed by default.

136 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Python client v0.62.1a7

Fixes

• "latest" model version specifier didn’t always retrieve the last model version created. This could cause deployments
to use the wrong model version.

Python client v0.62.1a6

New features

• Ability to download experiment artifacts. For more information, see Experiment artifacts tutorial.
• Ability to override experiment artifact mime_type when adding a new artifact. For more information, see Experiment

artifacts tutorial.

Python client v0.62.1a5

New features

• Metadata property for experiments.

Python client v0.62.1a4

New features

• Owner attribute for deployments, experiments, models, and projects.
• Ability to view deployment Kubernetes options (including requests, limits, afÏnity, and toleration).
• Ability to update deployment Kubernetes options (including scaling deployment down to zero resource usage).
• Ability to view deployment security options.
• Ability to update deployment security options (including changing passphrase for existing deployments).
• Ability to enable/disable monitoring for new and existing deployments.

Changes

• “UNHEALTY” status typo corrected to “UNHEALTHY”.

Python client v0.62.1a3

New features

• Support for experiment artifacts.

Changes

• experiment.artifact_types renamed to experiments.scoring_artifact_types.

Fixes

• List methods not returning over 100 entries.

Python client v0.62.1a2

New features

• Support for experiment comments.
• Support for experiment tags.
• Integration of https://github.com/h2oai/cloud-discovery-py.

Python client v0.62.1a1

Changes

• Use MLOps 0.62.1 backend.

137 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Version 0.62.0 (September 10, 2023)
New features

• For GPU-enabled model deployments, you can now set the appropriate Kubernetes (K8s) requests and limits by
clicking the GPU Deployment toggle when creating a deployment. For more information, see Deploy a model and
Kubernetes options.

• You can now create and assign experiment tags within a project. For more information, see Project page tabs.

• You can now edit the names and tags of experiments. For more information, see Project page tabs.

Improvements

• Viewing projects:

• The default view when viewing projects has been changed from the grid view to the list view.

• The Project ID of each project is now displayed in the list view.

• The list view now features pagination, sorting, and search capabilities.

• You can now search for a project by project name.

• You can now sort the list of projects by time of creation and last modified time.

• Project list view actions: You can now view, share, and delete projects from the project list view. For more
information, see List view actions.

• Improved UI for project sharing.

• Enhanced the Deployment Overview window to include Kubernetes settings and deployed model details across all
deployment modes. For more information, see Understand the Deployment Overview window.

• Python client:

• You can now enable or disable model monitoring for a deployment.

• You can now update the deployment security option or password.

• You can now delete experiments.

• You can now delete Registered Model and Model Version.

• Scoring:

• Prediction intervals are now supported for MOJOs and Driverless AI Python scoring pipelines. Prediction intervals
provide a range within which the true value is expected to fall with a certain level of confidence. You can check if
prediction intervals are supported by using the https://model.{domain}/{deployment}/capabilities endpoint.

• Added a new MLflow Dynamic Runtime to dynamically resolve the various model dependencies in your MLflow
model. For more information, see MLflow Dynamic Runtime.

Bug fixes

• Fixed an issue where the passphrase field could not be edited when creating a secured deployment.

• Fixed an issue that affected accurate sorting when using the sort by date functionality.

Version 0.61.1 (June 25, 2023)
Improvements

• Added support for Kubernetes 1.25.

• Added support for H2O Driverless AI version 1.10.5.

Bug fixes

• Various bug fixes to the deployment pipeline, monitoring, and drift detection.

138 © 2024 H2O.ai, Inc. All rights reserved.

https://kubernetes.io/blog/2022/08/23/kubernetes-v1-25-release/

H2O MLOps Version v1.0.0

Python client v0.61.1a3

Changes

• MLOpsClient class renamed to Client.
• _mlops_backend attribute renamed to _backend.

Version 0.61.0 (May 24, 2023)
New features

• You can now create A/B Test and Champion/Challenger deployments through the UI. For more information, see
Deploy a model.

• You can now create and view configurable scoring endpoints through the UI. For more information, see Configure
scoring endpoint.

• Concurrent Scoring Requests are now supported for Python-based Scorers. Scoring times for for C++ MOJO, Scoring
Pipeline, and MLflow types now support parallelization with the default degree of parallelization set to 2. This can
be changed with the environment variable H2O_SCORER_WORKERS. For more details, contact your H2O representative.

Improvements

• Added support for H2O-3 MLflow Flavors and importing of MLflow-wrapped H2O-3 models.

Version 0.60.1 (April 02, 2023)
New features

• Introduced a feature flag to enable the import third-party experiments (pickled experiments) flow with Conda. If you
require Conda or third-party pickle import, this flag needs to be set at the time H2O MLOps is installed to continue
using pickled experiments. For more information about enabling this feature flag when installing or upgrading H2O
MLOps, contact support@h2o.ai.

Improvements

• You can now search for users by username when sharing a project with another user. You can now also sort the user
list in alphabetical order.

• In the model monitoring feature summary table, the figures are now displayed only up to three decimals places.

• When no deployment name is present for the deployment, the deployment ID is now displayed as the name.

• A blocking error page is now shown to the user in case Keycloak is unavailable.

• Date and time are now both displayed for model monitoring predictions over time plot.

• Storage Telemetry now includes the additional fields Deployment Name and model version number.

Bug fixes

• Fixed a bug that caused experiments to fail during upload / ingestion.

• All dialogs in the UI can now can be closed with the escape key.

• Fixed a bug where drift was not previously calculated when a feature was determined to be a datetime type and the
date time format was missing.

Version 0.59.1
Improvements

• Added support for the DAI 1.10.4.3 runtime.

139 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Version 0.59.0 (February 12, 2023)
New features

• Storage telemetry: MLOps can now send analytical data related to storage operations to the telemetry server.
• Scoring telemetry: MLOps Scoring now sends scoring-related data to the telemetry server.
• Static scoring endpoints: You are now able to define and update a persistent URL that points to a particular MLOps

deployment.
• Deployment:

• Deployed scoring applications now set additional Kubernetes annotations.
• Deployment APIs now return more accurate and useful gRPC status codes and error messages.
• You can now download Kubernetes logs from deployments in the MLOps Wave App and MLOps API.

Improvements

• Upgraded the h2o-wave version to 0.24.1.
• Added support for the DAI 1.10.4.1 and DAI 1.10.4.2 runtimes.
• Updated the Python client.
• Added a cleanup task for files uploaded to the wave server.
• Updated the eScorer URL of the wave app deployment pipeline
• Added a new Kubernetes limit for the Hydrogen Torch runtime in the deployment creation flow.

Bug fixes

• Removed the custom implementation for the token provider.
• Removed the artifact-id from the DeployDeploymentComposition endpoint.
• Updated the packages in the base docker image.
• Fixed an issue related to displaying the session timeout page for deployment overview, view monitoring, and

monitoring homepage.
• Fixed an issue where the drift detection trigger blocked the other calculations by adding timeout support to the

InfluxDB client in trigger and worker.

Version 0.58.0 (December 15, 2022)
Improvements

• Added support for Kubernetes 1.23.
• Added support for H2O-3 MOJOs up to version 3.38.0.3.
• Added support for linking and deploying H2O Driverless AI unsupervised models.
• Added support for scoring H2O Driverless AI MOJOs with the C++ MOJO runtime.
• Added support for TTA for H2O Driverless AI Python pipelines.
• Shapley values can now be calculated for H2O Driverless AI Python pipelines and MOJOs.
• Datetime columns for H2O Driverless AI models are now automatically detected.
• Fixed an issue where the Driverless AI Python Pipeline scorer occasionally restarted randomly.
• Updated ML Python packages in the standard Python scorer to support a wider range of custom user models.
• BYOM scoring:

• Extended the Python scoring library to conform to v1.2.0 of the Scoring API.
• Unexpected input fields are now ignored when performing scoring.
• Introduced a feature that lets scorers override sample requests.
• Implemented an experimental API for image and file scoring.
• Replaced time-based handling of signals coming from Driverless AI scoring processes with static handling.
• Added a Driverless AI MOJO Pipeline artifact processor image.
• Added an H2O-3 artifact processor image.
• Updated the DAI pipeline processor dependencies to address security vulnerabilities.

Documentation

• Added a page that describes support for Test Time Augmentation (TTA) in H2O MLOps.

• Added several new Python client examples.

• Updated the page on Deploying a model.

140 © 2024 H2O.ai, Inc. All rights reserved.

https://kubernetes.io/blog/2021/12/07/kubernetes-1-23-release-announcement/

H2O MLOps Version v1.0.0

Version 0.57.3 (November 16, 2022)
New features

• You can now view monitoring dashboards for deployments directly through H2O MLOps. For more information, see
Model monitoring.

Version 0.57.2 (August 01, 2022)
New features

• When browsing the MLflow directory, you can now search for specific MLflow models by name. Note that this search
functionality is case sensitive, and that the model name can contain only letters, numbers, spaces, hyphens, and
underscores up to 100 characters.

• When browsing the MLflow directory, the list of MLflow models is now organized into pages. You can specify the
number of models listed on each page.

Bug fixes

• Fixed an issue where MLflow models could not be reimported.

Version 0.56.1 (May 16, 2022)
New features

• Azure access tokens can now be retrieved through H2O MLOps.

Improvements

• When creating a deployment, only deployable artifacts are now shown.

• Added Driverless AI (DAI) 1.10.2 and 1.10.3 as recognized versions of DAI for matching with DAI runtimes.

• H2O MLOps now displays either a success or error message when attempting to create a deployment.

• The process of linking models to an experiment is now simpler.

• H2O MLOps can now handle large text fields.

• Updated the H2O MLOps logo.

• Removed scroll bars in overview UI pages.

Bug fixes

• Fixed an issue that caused alignment issues between project cards.

• Underscores can now be used at the beginning of project names.

• Fixed an issue that caused H2O MLOps to crash when the deployer was restarted.

• Fixed an issue related to adding new comments to an experiment.

Version 0.56.0 (April 18, 2022)
New features

• Added support for batch scoring. For more information, see Deploying a model.

• Added support for H2O-3 MOJOs up to version 3.32.0.2.

Version 0.55.0 (March 31, 2022)
New features

• Added support for integration with MLflow Model Registry.
• Admin users can now monitor H2O MLOps usage within their organization with Admin Analytics.

141 © 2024 H2O.ai, Inc. All rights reserved.

https://docs.databricks.com/applications/mlflow/model-registry.html

H2O MLOps Version v1.0.0

Documentation

• Added a new page on enabling third-party model management integration.

• Added a new section on adding experiments from MLflow Model Registry.

Version 0.54.1 (March 08, 2022)
New features

• H2O Driverless AI (DAI) 1.10.2 is now supported. Experiments trained in DAI 1.10.2 can now be managed and
deployed by H2O MLOps.

Version 0.54.0 (February 03, 2022)
• New MLOps user interface.
• Pickle model support: Python serialized models in Pickle format can now be imported directly into MLOps. This

means that you can use your third-party models without relying on packagers like MLflow.
• Model Registry and Model Versioning: You can now register your experiments using MLOps Model Registry

and group new versions of a model using MLOps Model Versioning. Note that an experiment must first be registered
in the MLOps Model Registry before being deployed.

Version 0.53.0 (January 18, 2022)
Notice

• Updated required MLOps Terraform providers to benefit from bug fixes and expanded support for setting Kubernetes
options. Note that upgrading MLOps with the updated Terraform templates results in Terraform generating a
lengthy state file differential to review.

Improvements

• Added three new MOJO scorers to the default MLOps configuration. Each of these scorers provide support for
returning Shapley values along with model scoring.

• By default, all MLOps components now run as non-root users.
• By default, all third-party services deployed by MLOps except for RabbitMQ and Traefik run as non-root by default.
• Added support for setting a subset of Kubernetes Security Context options for any BYOM image.
• Exposed many new MLOps configuration fields as Terraform variables.
• Extended model scorers’ capabilities to recover from connection and timeout issues.
• Exposed option to set arbitrary Kubernetes resource requests and limits for MLOps model deployment.
• Exposed option to set number of desired Kubernetes pods for model deployments.
• Fixed an issue where deployments reported incorrect last modified timestamps.
• Added name and description fields to model deployment API objects, allowing deployments to be user-labelled.
• Fixed an issue where MLOps’ Deployer complained if certain BYOM configurations were missing. Defaults are now

correctly applied unless overridden.
• Fixed an issue where one of Deployer’s APIs was not exposed with the MLOps API. Known and available deployment

environments (that is, Kubernetes clusters) may now be queried with the MLOps API.
• BYOM containers can now have their log levels be globally configurable.
• Exposed a number of configuration fields for bundled third-party services.
• Reduced factor of Kubernetes API calls needed to be made by the deployment pipeline.
• Fix issue where a few dozen concurrent deployment processes could exhaust maximum allowed connections originating

from the Deployer service.
• Set scalability-minded options for resources deployed onto Kubernetes, significantly reducing CPU, memory, and

network load at scale.
• Exposed configuration fields for many internal, as well as Kubernetes-facing, timeouts options.
• Fixed configuration issue that would cause Ambassador pods to be put up for eviction after only hundreds of models

were deployed.

Documentation

• Added new page on node afÏnity and toleration.

142 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

• Added new page on Shapley values support.

• Added information on new Kubernetes options.

• Revised section on deploying models.

Version 0.52.1 (November 17, 2021)
New features

• Added support for Driverless AI (DAI) 1.10.0 (Supervised Models).
• Added new configuration options that let you push scoring data to a Kafka topic for monitoring purposes.

Improvements

• Experiments with metadata larger than 100 MB are now supported. The new limit is 1000 MB.

Version 0.52.0 (September 13, 2021)
New features

• Added support for Driverless AI (DAI) 1.9.3 Python pipelines.
• DAI Python pipelines must be imported either through the MLOps UI or programmatically by using the MLOps

API to deploy. They cannot currently be deployed directly from the project.
• Ambassador timeout can now be configured per runtime with the request-timeout parameter in the Deployer

configuration. Note that this parameter can also be set for any new BYOM runtime added to MLOps.

Improvements

• Added the ability to configure whether BYOM runtimes have write access to the volume hosting the model it’s
scoring.

• Exposed Terraform variables to make specifying custom BYOM entities easier.
• Added support for blob storages from public cloud storage services.
• Limited the number of error notifications displayed in the UI so that only one error is displayed at a time. Error

notifications are now automatically cleared when the error condition disappears.

Version 0.51.0 (August 20, 2021)
Improvements:

• Implemented integration with Kafka for pushing scoring data.

Version 0.50.1 (August 04, 2021)
Improvements:

• Updated default Python runtimes with improved error handling.
• For secure environments, added a terraform flag for disabling BYOM.

Bug Fixes:

• For Python models, fixed a UI issue that caused complex deployments to be unsupported.

Version 0.50.0 (July 29, 2021)
New Features:

• Added support for third-party Python models.

• Currently tested and supported versions include scikit-learn 0.24.2, PyTorch 1.9.0, XGBoost 1.4.2, LightGBM
3.2.1 and TensorFlow 2.5.0.

• Added selectable artifact types and runtimes for all types of artifacts and models.

Improvements:

• Added new deployer endpoints for creating, listing and deleting deployments.

143 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

• Changed the MLOps client package name from mlops to h2o_mlops_client.
• Renamed deployment template input variable from model_ingestion_image to model_ingest_image to be consistent

with the image name.
• Renamed deployment template input variable from gateway_image to grpc_gateway_image to be consistent with

the image name.

Version 0.41.2 (June 2021)
Improvements:

• Added support for Driverless AI 1.9.3 MOJOs.

Version 0.41.1 (June 2021)
Improvements:

• Improved deployer logging.

Bug Fixes:

• Fixed an issue that caused installation through Terraform to not provide MLOps with all required configuration.

Version 0.41.0 (May 25, 2021)
Improvements:

• Added drag-and-drop option for importing Driverless AI MOJOs.

Bug Fixes:

• Fixed an issue that caused a broken download link to be generated for the MLOps gRPC-Gateway image.

Documentation:

• Added info on Driverless AI version compatibility.
• Added info on the MLOps API URL.
• Added info on the Token Endpoint URL.

Version 0.40.1 (March 15, 2021)
Improvements:

• Added alert messages to Grafana.
• Added pagination support for Project and DeployEnvironment list retrievals.
• Improved Model Fetcher logging.

Bug Fixes:

• Fixed an issue where some Model Fetcher processes were not checked for errors.
• Fixed an issue where some deployments got stuck in the Init phase when too many deployments started or restarted

at the same time.
• Fixed a UI inconsistency between the Deployments and Models sections when no entries were displayed.
• Fixed a UI issue that caused the Add new project window to remain on the screen after successfully creating a

project.
• Fixed an issue that allowed users to be registered without a username.
• Fixed an issue that caused models with one or more typos in their metadata to fail when deploying.
• Fixed an issue where H2O-3 models could not be deployed.
• Fixed an issue where some Driverless AI 1.9.1 models could not be deployed.

Version 0.40.0 (January 14, 2021)
New Features:

• Added Python API support.

Improvements:

144 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

• Added Model Fetcher to deploy scorers without a persistent volume.

Bug Fixes:

• Fixed an issue where the deployer remained in the ‘Preparing’ state indefinitely when a model had an unsupported
transformer.

• Fixed an issue where models appeared in projects that they did not belong to.
• Fixed an issue that caused model selection to persist between different projects.
• Fixed an issue where the deployer did not clean up after fetching artifacts.
• Fixed an issue where certain menu items on the Projects page did not work as intended.

Version 0.31.3 (December 02, 2020)
Improvements:

• Driverless AI instances can now be run in a different namespace from storage namespace.
• Users can now override the default ingress class.

Bug Fixes:

• Fixed an issue that stopped project summary alerts from being updated.

Version 0.31.2 (November 11, 2020)
Improvements:

• Removed one PROD model per project restriction.
• Added a demo mode to the Studio page so that the default is more secure.
• Added optional password protection for Grafana.

Bug Fixes:

• Fixed an issue that stopped project summary alerts from being updated correctly.
• Fixed an issue that caused the alerts page to crash when a deployment had multiple alerts of mixed types.
• Fixed an issue that stopped the number of model pages from being updated correctly.
• Fixed an issue that caused all metadata to be fetched when listing experiments.

Version 0.31.1
Skipped and rolled in to 0.31.2.

Version 0.31.0 (October 21, 2020)
New Features:

• Added model endpoint security. Users can enable and configure authentication when deploying a model.

Bug Fixes:

• Fixed an issue where the sample cURL request for an endpoint with a hashed passphrase did not have an input box.
• Fixed an issue where single character passphrases were ignored.
• Fixed an issue where the set passphrase dialog did not appear for Champion/Challenger and A/B deployments.

Version 0.30.1 (October 08, 2020)
New Features:

• Added user-friendly H2O-3 model import support.

Improvements:

• Improvements in sorting/pagination.

Bug Fixes:

• Fixed issues with deployments list.
• Set default page size for lists to 10 pages.
• Various bug fixes

145 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Version 0.30.0
Skipped and rolled in to 0.31.1.

Version 0.22.0 (July 30, 2020)
Bug Fixes:

• Fixed an issue where UI elements overlapped in Firefox.
• Fixed an issue where users could not log back in to MLOps after the session cookie expired.
• Fixed an issue where the Ambassador pod failed to start.

Version 0.21.1 (July 07, 2020)
Bug Fixes:

• Made the software version number visible in the UI.
• Added table pagination according to deployment pipeline design.
• Fixed an issue that caused the model actions drop-down menu to appear empty.
• Fixed an issue where models linked from Driverless AI could not be deleted.
• Fixed an issue where unfinished Driverless AI experiments could not be linked.
• Made the delete action unavailable to users with the Reader role.
• Fixed an issue where deployments were reported as having failed after pods were restarted.
• Fixed an issue where the scoring data for an experiment linked to more than one project was not stored in InfluxDB.

Version 0.21.0 (June 12, 2020)
New Features:

• Added drift detection analysis for models.
• Added A/B testing to compare the performance of two or more models.
• Added Champion/Challenger deployments.

Bug Fixes:

• Increased the default timeout for waiting for a pod to provision when deploying.
• Fixed an issue that stopped deployments from being listed for challenger models.
• Fixed an issue that caused MLOps to crash when a feature field was not found in the drift report.
• Fixed an issue that caused the A/B Test link to remain active when no model was selected.
• Fixed an issue on the Projects page that caused the delete model action to not work correctly.
• Fixed an issue in the Grafana dashboard that caused the scoring latency graph to appear as having no data.
• Fixed an issue that stopped collaborators from being able to create deployments when they were not restricted from

doing so.
• For the Reader user role, fixed an issue that caused incomplete error messages to appear for failed user actions.
• Fixed an issue that caused the filtering option to disappear from the Models page.
• Fixed an issue where undeploying a model that was a part of multiple deployments did not work correctly.
• Fixed an issue that caused the ‘More details’ action to become activated when ‘Monitoring’ was selected from the

Actions menu.

Version 0.20.1 (April 02, 2020)
Bug Fixes:

• Fixed an issue that stopped the user interface from accessing storage after restarting all pods.
• Fixed an issue that caused PostgreSQL data to be purged when the pod was restarted.

Version 0.20.0 (April 01, 2020)
• First stable release.

146 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Migration guide
This guide helps you update H2O MLOps when moving between versions. It outlines migration steps for each version
upgrade and focuses on changes that require updates to your code, configuration, or workflows.

For detailed changes to the H2O MLOps Python client, see the Python client migration guide

From 0.70.0 to 1.0.0
Workspace integration

MLOps 1.0.0 is integrated with the Workspace service. All projects have been migrated to Workspaces, and both the user
interface and Python client have been updated accordingly.

Python client

The legacy, automatically generated Python Client is no longer compatible with MLOPS 1.0.0. Only the h2o-mlops 1.4.0
and higher is supported. Please migrate your workflows to the new Python Client.

To migrate from version 1.3.x to 1.4.x, see the Python client migration guide from v1.3.x to v1.4.x.

Removal of Wave UI

Starting from H2O MLOps version 1.0.0, the legacy Wave-based user interface is no longer available. The ofÏcial and
supported MLOPs user interface is now part of the H2O AI Cloud user interface. The Admin Analytics Wave app has also
been removed, and its capabilities have been migrated to the new interface.

Helm chart changes

In Affinity and Tolerations configuration, the field matchExpression has been replaced by the matchExpressions.

The option apiGateway.authorization.enabled has been removed as authorization is now automatically used on
API Gateway. In case this option was set to false in previous MLOPs versions, please make sure to keep the
apiGateway.authorization.allowedUserRoles set to []. [] is default value of this option.

Monitoring setup changes

Starting from H2O MLOps version 1.0.0, the legacy monitoring setup has been removed and replaced with a new
configuration method using the MonitoringOptions class in the Python client. Monitoring is disabled by default and
must be explicitly enabled during or after deployment.

Kafka sink configuration is now more granular and can be set on a per-model basis.

For more information, see Monitoring setup.

Migrate from old monitoring to new monitoring New monitoring setup is completely different from legacy
monitoring setup and if you need to migrate legacy monitoring data and deployments to new monitoring setup MLOps
provides a migration job with MLOps 1.0.0 release. You need to explicitly enable it during or after the installation using
Helm charts parameters.

Monitoring migration is anyway optional and new monitoring will work without it for newly created deployments. But new
monitoring won’t be enabled for already created deployments before MLOps 1.0.0 and you won’t see monitoring metrics
for historical scoring data without the migration. If you need to enable the monitoring migration you have to set the helm
parameters as follows.

global:
components:
influxdb:
enabled: true

superset:
enabled: true

mlops:
config:
models:

147 © 2024 H2O.ai, Inc. All rights reserved.

https://pypi.org/project/h2o-mlops/

H2O MLOps Version v1.0.0

monitoringEnabled: true
monitoringMigrationEnabled: true

Please note that to enable monitoring migration you need to enable new monitoring also. You cannot enable only the
migration alone.

Hash security option changes

Starting from H2O MLOps version 1.0.0, hash-based security options require you to provide the passphrase directly. The
hashing is now handled automatically in the backend.

Make sure to store the passphrase in a secure location, as you won’t be able to retrieve it after it’s submitted.

From 0.69.x to 0.70.0
Transition from Scoring Client to native batch scoring

Starting from H2O MLOps version 0.70, batch scoring functionality has been natively integrated into H2O MLOps,
replacing the H2O MLOps Scoring Client. The native batch scoring implementation is available through the ofÏcial H2O
MLOps Python client.

For added convenience, batch scoring can also be performed through the new H2O MLOps UI. Please contact H2O.ai
support in case you need any guidance on this migration.

Workload identity and IAM authentication
Starting from H2O MLOps version 0.70, workload identity and IAM authentication will be managed using the
github.com/h2oai/go-pkg/database/postgres/v2 library for the mlops-storage, mlops-telemetry, and mlops-
deployer components.

Update the connection strings for these components to match the formats shown in the examples below:

Example of the mlops-storage and mlops-telemetry database connection string:

storage_db_connection_string = "postgres://${var.mlops_db_username}@${var.mlops_db_address}:5432/${var.mlops_storage_db}?aws_iam_auth_enabled=true&aws_iam_auth_region=${var.aws_region}&aws_iam_auth_user=${var.mlops_db_username}&aws_iam_auth_endpoint=${var.mlops_db_address}:5432"

Example of the mlops-deployer database connection string:

deployment_db_connection_string = "postgres://${var.mlops_deployment_db_address}/${var.mlops_deployment_db_name}?sslmode=${var.db_connection_ssl_mode}&user=${urlencode(var.mlops_deployment_db_username)}&password=${urlencode(var.mlops_deployment_db_password)}"

Removal of mTLS

mTLS is no longer managed by Kubernetes jobs. For environments requiring mTLS communication between MLOps
services, this should now be handled by a service mesh solution (such as Istio).

Previous versions used SPIFFE for service-to-service authentication. Version 0.70+ now uses service account tokens
instead.

Migration Steps If your deployment requires mTLS:

1. Remove any existing Kubernetes job configurations for mTLS.
2. Implement a service mesh solution to manage mTLS between services.
3. Configure your service mesh to handle the TLS certificate management.

Changes in Helm

• Config tls has been removed.

• Config storage.tls has been removed.

• Config deployer.tls has been removed.

• Config ingest.tls has been removed.

• Config apiGateway.tls has been removed.

• Config monitoringAppBackend.tls has been removed.

148 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

• Config deployer.telemetry.auth.tlsEnabled has been removed.

• Config telemetry.serverSecurityEnabled has been removed.

• Config storage.auth.service has been added:

service:
-- Issuer URL for service authentication.
In general, this should be set to whatever the "issuer" field is in the cluster's
OIDC discovery document.
`kubectl get --raw /.well-known/openid-configuration` can be used to retrieve
the discovery document.
issuerURL: "https://kubernetes.default.svc"

-- Configures whether to validate issuer URL for service authentication.
Issuer of some service account variants does not need to be the issuer
specified by the issuerURL.
validateIssuer: false

-- Configures whether to use the Kubernetes HTTP client with TLS and token the issuer discovery
and downloading the signing keys.
Disable this when the issuer is not Kubernetes API server.
useKubernetesHTTPClient: true

Removal of support for older H2O Driverless AI versions

In MLOps version 0.70, support for H2O Driverless AI versions 1.10.6.3 and earlier has been discontinued. This change
affects the following versions:

• 1.10.5-cuda11.2.2
• 1.10.5.1-cuda11.2.2
• 1.10.6-cuda11.2.2
• 1.10.6.1-cuda11.2.2
• 1.10.6.2-cuda11.2.2
• 1.10.6.3-cuda11.2.2

Removal of Pickle Runtime

Starting from H2O MLOps version 0.70, the Pickle Runtime has been removed. ### Removal of environment from
Python Client and UI

Starting with MLOps version 0.70.0, the environment feature has been removed from the user perspective in both the
Python client and the UI. This change does not apply to the backend, and environment-related functionalities remain
intact.

Changes in the UI

• Users no longer need to select an environment (e.g., PROD or DEV) when creating a deployment.
• The environment now defaults internally to PROD.
• Environment-related details are no longer visible in the UI.

Changes in the Python Client

• The environments property of the MLOpsProject instance is no longer available starting from client version 1.3.0.

• The environment now defaults internally to PROD.

• When using the updated client, the following adjustments must be made in the code. Here, project refers to an
instance of MLOpsProject, and client refers to an instance of h2o_mlops.Client:

Code Adjustments:

• Replace project.environments.get(uid).deployments with project.deployments.
• Replace project.environments.get(uid).endpoints with project.endpoints.
• Replace project.environments.get(uid).allowed_affinities with client.allowed_affinities.

149 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

• Replace project.environments.get(uid).allowed_tolerations with client.allowed_tolerations.

With these adjustments, your code will remain compatible with both the updated and older versions of the MLOps
backend.

From 0.68.x to 0.69.0
MLOPs runtimes

All runtime images must be updated to at least version 1.5.3, which was released with H2O MLOps version 0.69.0

Starting with version 0.69.0 all runtime images must be always updated to the runtime images released with that
corresponding H2O MLOPs version. For example, H2O MLOps 0.69.1 was released with runtime images v1.5.4, and
therefore all deployment’s images must be updated to runtimes v1.5.4.

MLOps storage

Starting with MLOps version 0.69.0, only blob storages are supported as the backend. Support for other storage options
has been discontinued. This change impacts the configuration parameters used in the MLOps Helm charts.

Changes to storage configuration parameters

storage:
persistence:
All parameters under this section are no longer supported.

cloudPersistence:
The 'enabled' parameter was removed since cloudPersistence is now the only option supported.
enabled:

pvcMigration:
All parameters under this section are no longer supported.

Note: After upgrading to MLOps 0.69.0, you can safely delete your existing PVC that was used as the storage backend
prior to the 0.68.0 release. Perform this step manually to prevent any unintended data loss.

PBKDF2 hash support

H2O MLOps v0.69.0 now supports the PBKDF2 passphrase hash algorithm for more secure hashing. Note the following
details:

• The PBKDF2 hash should follow the format pbkdf2:<hashFunc>:<iterations>$<salt>$<hash>.
• The salt and hash should be base64 encoded.
• PBKDF2 hashing replaces bcrypt when creating deployments with the Passphrase (Stored hashed) security option.
• The Passphrase (Stored hashed) security option is listed as an available option in the Create Deployment

panel dropdown only if PASSPHRASE_HASH_TYPE_PBKDF2 is included under securityOptions.activated in the
values.yaml. Having PASSPHRASE_HASH_TYPE_BCRYPT is neither sufÏcient nor required.

• Older deployments created with bcrypt hashing remains accessible without requiring any additional configuration.

From 0.67.x to 0.68.0
(Optional) Vertical Pod Autoscaler (VPA) support

MLOps version 0.68.0 introduces Vertical Pod Autoscaler (VPA) support for the Deployer. Note that VPA activation is
optional and performed upon request. VPA allows dynamic scaling of CPU and memory resources based on application
usage, improving resource efÏciency and optimizing costs.

If the VPA is activated in MLOps, then VPA is supported in the cluster and the VPA CRDs and controllers are up and
running alongside the Metrics Server.

For more information, see the Installation section of the VPA GitHub README and the Metrics Server installation
instructions.

Note: For a list of known limitations, see the Known limitations section of the VPA GitHub README.

150 © 2024 H2O.ai, Inc. All rights reserved.

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#installation
https://github.com/kubernetes-sigs/metrics-server?tab=readme-ov-file#installation
https://github.com/kubernetes-sigs/metrics-server?tab=readme-ov-file#installation
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#known-limitations

H2O MLOps Version v1.0.0

Key changes

• VPA Resource Specifications: Added VPA resource specification logic to the Scoring Apps and App Composer,
allowing for the dynamic adjustment of their resource limits based on real-time demand.

• API Updates: New API logic has been added for specifying and validating VPA resources.
• New VPA Utility Functions: Implemented utility methods for creating and managing VPA resources, including

validation and resource quantity handling.
• Deprecated Function Removal: Removed the deprecated Fabric8 createOrReplace usage in the Scoring Apps.

Removal of HT runtime based on Python 3.8

The Hydrogen Torch (HT) runtime based on Python 3.8, which was available by default in MLOps version 0.67.x, has been
removed as of MLOps version 0.68.0. However, you can still use this runtime by registering it through extra runtimes.

The following requirements need to be met so that the runtime registered through extra runtimes is also visible in the UI:

• The mlflow/flavors/python_function/loader_module must match mlflow.pyfunc.model.
• The runtime name must adhere to this pattern: (python-scorer_hydrogen_torch_)(\w*)(38)(\w*).

Configure maximum number of Kubernetes replicas

With H2O MLOps v0.68.0, you can configure the maximum number of Kubernetes replicas that can be specified when creat-
ing a new deployment. To do this, update maxDeploymentReplicas in the values.yaml file (charts/mlops/values.yaml).
By default, the maxDeploymentReplicas value is set to 5.

Removal of MLflow runtimes based on Python 3.8

MLflow runtimes based on Python 3.8 have been removed in MLOps version 0.68.0. Python 3.8 has ofÏcially reached end
of life as of October 07, 2024.

Pickle runtime based on Python 3.12

MLOps version 0.68.0 introduces a pickle runtime using Python 3.12. Choose one of the following options:

• Update your models to work with Python 3.12.

• If you cannot update your models, the original pickle runtime based on Python 3.8.18 can be configured during
MLOps installation by replacing the pickle-3.12.7 image with pickle-3.8.18.

Deployment of MLOps Telemetry as a long-running microservice

In MLOps version 0.67 and earlier, the MLOps telemetry component was configured as a cron job within the MLOps
storage component in the Helm configuration. Starting with MLOps version 0.68, the MLOps telemetry component
must be deployed as a separate long-running microservice that publishes event data at scheduled intervals.

To migrate from MLOps version 0.67 to 0.68: 1. Remove the cron job configuration from the MLOps storage component
in the Helm configuration. 2. Implement it as a separate telemetry component within Helm.

Helm values must be set as follows: # Telemetry Configrations telemetry = { enabled = true image
= { repository = "h2oai-modelstorage-telemetry${local.shared_services_repository_suffix}"
tag = local.component_version.mlops_telemetry_version } replicaCount = 1
nodeSelector = { "hac.h2o.ai/provisioner" = "karpenter" } tolerations = [
{ key = "type" operator = "Equal" value = "cpu-consolidation"
effect = "NoSchedule" }] podSecurityContext = { enabled = true }
containerSecurityContext = { enabled = true } serviceAccount = { name
= "hac-mlops-storage-telemetry-service-account" } serverAddress = "hac-telemetry-
service.telemetry.svc.cluster.local:80" config = { logLevel = "error" } }

Scheduler routine for MLOps Telemetry

MLOps version 0.68.0 introduces the SCHEDULER_INTERVAL_SECONDS env variable to run scheduler routine inside the
application itself, replacing the use of a cron job. As a result, MLOps Telemetry is deployed as a long-running deployment
in the K8s cluster that publishes event data at scheduled intervals. The default value is as follows:

SCHEDULER_INTERVAL_SECONDS=300

151 © 2024 H2O.ai, Inc. All rights reserved.

https://kubernetes.io/docs/reference/glossary/?fundamental=true#term-replica

H2O MLOps Version v1.0.0

Restructured environment security options

Environment-related security options are now configured in a different way. Prior to v0.68.0, security options were specified
using their corresponding numerical values. For example:

securityOptions: [1,2,3]

From v0.68.0 onwards, activated security options are configured in the values.yaml file (charts/mlops/values.yaml)
using the security option name. For example:

securityOptions:
activated:

-
- "AUTHORIZATION_PROTOCOL_OIDC"
-

You can also set the default security option in the values.yaml file (charts/mlops/values.yaml) using the security
option name. The default option serves as the default security setting that will be applied in the UI when creating a
deployment and it must be a part of the Activated Security Options List.

securityOptions:
activated:

-
- "PASSPHRASE_HASH_TYPE_PLAINTEXT"
-

default: "PASSPHRASE_HASH_TYPE_PLAINTEXT"

The following security options are supported in v0.68.0:

• DISABLED: No security options are activated.
• PASSPHRASE_HASH_TYPE_PLAINTEXT: Passphrase hash type is plaintext.
• PASSPHRASE_HASH_TYPE_BCRYPT: Passphrase hash type is bcrypt.
• AUTHORIZATION_PROTOCOL_OIDC: OIDC authorization protocol is activated.

Notes:

• The Activated Security Options List can not be empty.
• The default option must be part of the Activated Security Options List.

From v0.68.0 onwards, the way to create a deployment with No Security via API call also differs from previous versions.
This change includes the following modifications to the h2o-mlops Python Client:

• security_options is now a required field for the create_single method of the MLOpsScoringDeployments class.

• To ensure backward compatibility, v0.68.0 includes a new attribute for the SecurityOptions class, called
disabled_security. This attribute allows handling cases with the No Security option by setting it to True,
instead of treating None or SecurityOptions() as No Security.

• Users of MLOps assembly v0.68.0 or above must set disabled_security=True to use the No Security option. For
users on older versions, No Security mode can be accessed by using SecurityOptions with default values.

Helm changes

• As of version 0.68.0, the ENABLE_USER_EXTERNALID_UPDATE environment variable has been removed from storage, as
it is no longer necessary.

• deploymentEnvironment.corsOrigin has been removed. Use global.cors.allowedOrigin instead.

Default deployment security option

As of version 0.68.0, the default security option for deployment is PASSPHRASE_HASH_TYPE_PLAINTEXT. Prior to this version,
deployments were not secured by default.

152 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Cloud migration information: MLOps storage

Starting with version 0.68.0, H2O MLOps will no longer support PVCs for storage, transitioning instead to cloud blob
storage. MLOps storage will support blob storage from all three major cloud providers—AWS, Azure, and GCP—as well
as Minio for on-premises installations. Consequently, all existing data must be migrated from PVC to blob storage during
the upgrade to MLOps 0.68.0. All the data migrations steps will be taken care of by MLOps when MLOps storage is
deployed in the MIGRATE mode and no manual user intervention is needed. End users shouldn’t experience any down
time or data loss while the migration is in progress.

Installation instructions

Deploy storage in MIGRATE mode Note: Only follow the instructions in this section if MLOps storage was
previously deployed with LOCAL mode using a Kubernetes PVC as the storage.

For AWS environments with S3

IAM auth is used to access the bucket. Following annotation should be set to the storage service account.

eks.amazonaws.com/role-arn: <iam-role-arn>

storage:
serviceAccount:
create: true
annotations: {
eks.amazonaws.com/role-arn: <iam-role-arn>

}
persistence:
enabled: true

cloudPersistence:
enabled: true
url: s3://<bucket-name>?region=<bucket-region>&prefix=<optional-prefix>

pvcMigration:
enabled: true
cloudProvider: s3
bucketName: <bucket-name>
region: <bucket-region>
prefix: <optional-prefix>

For GCP environments with Google Cloud Storage

Workload identify is used to access the bucket. The following annotation must be set to the storage service account:

iam.gke.io/gcp-service-account: <service_account_email>

Helm values must be set as follows:

storage:
serviceAccount:
create: true
annotations: {
iam.gke.io/gcp-service-account: <service_account_email>

}
persistence:
enabled: true

cloudPersistence:
enabled: true
url: gs://<bucket-name>

pvcMigration:
enabled: true
cloudProvider: gcs
bucketName: <bucket-name>
region: <bucket-region>

153 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

For Azure environments with Azure Blob Storage

Workload identify is used to access the bucket. The following annotation must be set to the storage service account:

azure.workload.identity/client-id=<client-id>

The following label must be set to storage pods (service and migrator job):

azure.workload.identity/use=true

Helm values must be set as follows:

storage:
serviceAccount:
create: true
annotations: {
azure.workload.identity/client-id=<client-id>

}
extraPodLabels: {
azure.workload.identity/use=true

}
persistence:
enabled: true

cloudPersistence:
enabled: true
url: azblob://<bucket-name>

pvcMigration:
enabled: true
cloudProvider: azureblob
bucketName: <bucket-name>
region: <bucket-region>
accountName: <storage-account-name>

For on-premise environments with Minio

storage:
persistence:
enabled: true

cloudPersistence:
enabled: true
url: s3://<minio-bucket-name>?endpoint=<minio-url>®ion=<minio-region>&hostname_immutable=true
access_key_id: <minio-access-key-id>
secret_access_key: <minio-secret-access-key>

pvcMigration:
enabled: true
cloudProvider: minio
bucketName: <bucket-name>
region: <minio-region>
endpoint: <minio-url>
access_key_id: <minio-access-key-id>
secret_access_key: <minio-secret-access-key>

From 0.66.1 to 0.67.0
Announcement: Upcoming Java MOJO Runtime removal

The Java MOJO Runtime will be removed in the 0.69.0 MLOps release. Version 0.68.0 will be the last release to include
the Java MOJO Runtime.

Users are advised to migrate to the C++ MOJO Runtime, which is a 1:1 mapping of the Java runtime that accepts a
wider range of algorithms Driverless AI may use that the Java runtime does not support, including BERT, GrowNet, and
TensorFlow models.

154 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Scoring runtimes

• MLflow Runtimes images are twice as large now. This means that deployments of these run-times can take longer
due to longer pulling times.

• Runtimes for DAI 1.10.4.3 and older are removed as of MLOps version 0.67.0.

• MLflow runtimes support Python 3.8 and later starting with MLOps version 0.67.0.

For more information on scoring runtimes in H2O MLOps, see Scoring runtimes.

Python client

Starting with version 0.67.0, the ofÏcial Python client of H2O MLOps is h2o-mlops. The minimum Python version required
for the client is Python 3.9.

Built on top of the legacy Python client, h2o-mlops retains all previous functionalities. You can continue to access the
legacy client’s features through h2o-mlops as needed.

Note that users of the legacy client can switch to the new Python client (h2o-mlops) by importing h2o-mlops before
using any features of the legacy client. This switch can be made without needing to modify any existing code or import
statements.

Removal of Conda from Wave app

With the removal of Conda as of MLOps version 0.67.0, third-party models can no longer be uploaded to the MLOps
frontend using serialized Pickle files. However, you can still upload models from frameworks like scikit-learn, PyTorch,
XGBoost, LightGBM, and TensorFlow using MLflow packaged files.

Monitoring data retention

• Starting with version 0.67.0, per project data retention duration can be set for monitoring data stored on InfluxDB.
To enable this feature, set the MONITOR_INFLUXDB_PER_PROJECT_DATA_RETENTION_PERIOD env to the deployer
with a correct duration string. Minimum retention period is 1h and the max is INF. INF will be the default If
MONITOR_INFLUXDB_PER_PROJECT_DATA_RETENTION_PERIOD is not set, INF is the default duration.

-monitor_influxdb_per_project_data_retention_period is exposed for H2O MLOps helm charts to set the
MONITOR_INFLUXDB_PER_PROJECT_DATA_RETENTION_PERIOD for deployer.

Emissary

Switch from emissary to gateway-api:

• Emissary’s CRDs are no longer used.
• For mapping deployments to http, Gateway API’s HTTPRoute CRD is used.
• Gateway API implemented with Envoy Gateway.
• (Breaking change) Gateway API doesn’t support custom error responses. This means that if a deployment is scaled

down, the following custom error body is no longer displayed: Deployment is scaled down to zero replicas.
Please increase the number of replicas to use the deployment. For more information, see Custom error
responses.

• (Breaking change) - If a deployment is scaled down, error code 500 is thrown instead of 503.

Other changes

• External model registry is removed as of version 0.67.0.

Key terms
This page provides an overview of key terms and concepts that apply to H2O MLOps.

155 © 2024 H2O.ai, Inc. All rights reserved.

/model-deployments/scoring-runtimes.md
https://pypi.org/project/h2o-mlops/
https://gateway-api.sigs.k8s.io/
https://gateway.envoyproxy.io/
https://www.getambassador.io/docs/emissary/latest/topics/running/custom-error-responses
https://www.getambassador.io/docs/emissary/latest/topics/running/custom-error-responses

H2O MLOps Version v1.0.0

Workspaces
In MLOps, a workspace is the main folder that contains experiments, artifacts, models, and deployments. Workspaces are
designed to be collaborative, and can be shared between multiple individuals. Additionally, workspace owners can specify
role-based access control for each individual that is invited to collaborate on a workspace. Workspaces can be used to
group all work items for a specific team, or can be used to group all work items for a specific use case.

:::info note - Access to users is controlled at the workspace level. If a user has read and write access to a workspace, they
are able to make changes to all experiments, models, and deployments associated with that workspace. - Any projects that
have been created in H2O Driverless AI are automatically synchronized with H2O MLOps workspaces. :::

BYOM (Bring Your Own Model)
BYOM, or Bring Your Own Model, refers to the process of importing models trained outside the H2O MLOps platform,
such as models from H2O Driverless AI, H2O-3, or MLflow, for deployment and management in H2O MLOps.

Experiments
In MLOps, an experiment is defined as the output of a training job. Many different experiments can be rapidly created by
modifying specific parameters and hyperparameters. Experiments can be imported in the following formats:

• Driverless AI MOJO (directly through DAI interface, or by dragging and dropping file).
• H2O-3 open source MOJO (dragging and dropping file).
• Third-party model frameworks. This includes scikit-learn, PyTorch, XGBoost, LightGBM, and TensorFlow. Import

by dragging and dropping an MLflow packaged file.

:::info note Before an experiment can be deployed, it must first be registered in the H2O MLOps Model Registry. :::

Experiment metadata

Each experiment in the H2O.ai Storage can have multiple key-value pairs attached to it. These values are not interpreted
by the storage itself but can be interpreted by the clients or client services that access data in the Storage.

Experiments that are added to H2O MLOps from the MLflow Model Registry include both the MLflow model name
(source_model_name) and MLflow version number (source_model_version) as part of the experiment metadata.

Artifacts in MLOps
Defining artifacts and experiment artifacts

• Artifact: An arbitrary binary large object (BLOB) attached to a particular entity in the H2O.ai Storage.
• Experiment Artifact: Any artifact that is attached to the experiment entity.

Artifact type

Because any entity can have multiple artifacts attached to it, specific artifacts must be identified by their type. Type is an
arbitrary string. Artifact type is recognized by and relevant to MLOps deployments.

The following is a list of artifact types:

• dai/mojo_pipeline (Natively supported, ingestion supported)
• h2o3/mojo (Natively supported, ingestion supported)
• Python/MLflow (Ingestion supported)

Deployable artifact type

A deployable artifact type is an artifact type that the Deployer knows how to process and deploy. Each deployable artifact
type consists of the name, readable name, and reference to the artifact type.

Artifact processor

Artifact processor is the routine that takes the raw artifact data and transforms it into the format that is digestible by
the runtime. In this routine, an artifact is defined by its name, the model type that it produces, and a container image
reference.

156 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Artifact processors can be any container image that can be pulled from the target deployment environment. Each processor
needs to recognize and use two environmental variables.

The following is a list of artifact processor environment variables:

• SOURCE_PATH: Path to the file containing the raw data of the artifact
• TARGET_PATH: Path where the processor saves its output. This path is passed as MODEL_PATH to the runtime

Deployments
In MLOps, deployments are created when model version(s) are served for scoring. Deployments are configured by Type
(real-time, batch) and Mode (single model, A/B, C/C).

A deployment is always tied to a specific model version. You cannot edit or replace the version of an existing deployment.
To serve a new model version, you must create a new deployment.

To minimize disruption, endpoints can be reused across deployments by deploying the new model and updating the
endpoint target from the old deployment to the new deployment. This allows you to continue using the same endpoint
with zero downtime.

Drift detection
Drift detection in MLOps is based on Feature Drift. This term is used to describe situations where the input values for
features during scoring differ from the input values for features during training. When drift increases, it means that the
model is seeing data that it was not trained on, and so the performance and results of the model may not be accurate.

Drift evaluation

The drift evaluation metrics used in MLOps are the Population Stability Index (PSI) and Drift Score. The PSI only
works for numerical features, whereas drift score can work with categorical features.

The following image compares PSI, drift score and AUC.

Figure 1: PSI, drift score, and AUC comparison

Population Stability Index To learn how the PSI is calculated in MLOps, refer to the following steps:

1. The reference samples are binned in a maximum of 10 equal bins. Depending on the distribution, you may end up
with less or unequally populated bins. Equal binning gives less weight to tails.

2. Compute the frequency of each bin.

3. Apply the binning to scoring samples and compute frequencies.

4. Compute PSI as follows:

157 © 2024 H2O.ai, Inc. All rights reserved.

H2O MLOps Version v1.0.0

Figure 2: PSI formula

:::info note - PSI does not support missing values. - PSI is more suited for numerical features or ordinal features. This
metric may have difÏculty with categorical features, particularly with high cardinality categoricals. :::

Drift score To learn how drift score is calculated in MLOps, refer to the following steps:

1. The reference samples are binned in a maximum of 10 equal bins. Depending on the distribution, you may end up
with less or unequally populated bins. Equal binning gives less weight to tails.

2. Compute the frequency of each bin.

3. Apply the binning to scoring samples and compute frequencies.

4. Compute drift score as follows:

Figure 3: Drift score formula

Node afÏnity and toleration
As stated in the ofÏcial Kubernetes documentation, “node afÏnity is a property of Pods that attracts them to a set of
nodes, either as a preference or a hard requirement. Taints are the opposite—they allow a node to repel a set of pods.
Tolerations are applied to pods, and allow (but do not require) the pods to schedule onto nodes with matching taints.” In
the case of MLOps, these options let you ensure that scorers (pods) are scheduled onto specific machines (nodes) in a
cluster that have been set up for machine learning tasks.

158 © 2024 H2O.ai, Inc. All rights reserved.

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

	What is H2O MLOps?
	Access H2O MLOps
	Install the H2O MLOps Python client

	Workflow
	Overview
	Step 1: Select the workspace
	Step 2: Add a model
	Step 3: Deploy the model version
	Step 4: Score against the deployment
	Step 5: Monitor the deployed model

	Workspaces
	Understand models
	Model schema
	Schema format
	Column types

	Model type

	Add models
	View models
	Understand the Model details panel
	Update the model name and description
	Add a new model version
	View model versions

	MLOps model support
	H2O Driverless AI MOJO pipeline / Python scoring pipeline
	H2O-3 open-source MOJO
	H2O Hydrogen Torch MLflow artifact
	Third-party model frameworks through MLflow
	Example walkthrough

	MLflow model support
	Supported third-party models
	Create MLflow artifacts for third-party frameworks

	Understand deployments
	Scoring runtimes
	Runtime options
	Artifact names mapping
	Runtime names mapping
	MLflow Dynamic Runtime
	Example: Train a dynamic runtime model
	Generic Ephemeral volumes

	Create a deployment
	Advanced settings
	Kubernetes options
	Enable or turn off model monitoring
	Endpoint security

	Driverless AI Deployment Wizard
	Deploying NLP models
	Driverless AI
	MLflow

	MLOps Processing Deployments
	Processing Model Creation
	Scoring

	View deployments
	Understand the Deployments page
	Details
	Endpoints
	Quick scoring

	Missing values

	Vertical Pod Autoscaler (VPA) support
	Configurations

	Pod Disruption Budget (PDB)
	PDB API specification
	Helm chart configuration

	Understand model scoring
	Quick scoring
	Score directly from the UI
	Scoring with cURL scoring request

	Shapley values support
	Step 1: Enable Shapley values when deploying a model
	For DAI experiments
	For H2O-3 MOJO experiments

	Step 2: Request Shapley values in a curl request
	ORIGINAL
	TRANSFORMED

	Test Time Augmentation (TTA) support
	Step 1: Enable TTA when deploying a model
	Step 2: Check if the deployment has TTA support in a curl request
	Step 3: Score in a curl request

	Prediction intervals support
	Step 1: Check if the deployment has requestPredictionIntervals support in a curl request
	Step 2: Make a prediction with requestPredictionIntervals enabled

	H2O MLOps Scoring REST API: OpenAPI specification file
	Model monitoring
	Model monitoring with the UI
	Step 1: Enable model monitoring
	Step 2: Configure and deploy
	Step 3: Start scoring
	Step 4: View aggregated data
	Step 5: Analyze data in the monitoring UI

	Configure model monitoring with the Python client
	Raw data export to Kafka

	Batch scoring
	Batch scoring with the UI
	Source spec

	Batch scoring with Python client

	H2O MLOps Python client
	Installation
	Version compatibility

	Getting started
	Prerequisites
	Step 1: Import the required packages
	Step 2: Initialize the H2O MLOps client
	Step 3: Create a workspace
	Step 4: Register an experiment as a model version
	Step 5: Deploy the model
	Step 6: Wait for the deployment to become healthy
	Step 7: Score data against the deployment
	Explore more examples

	Connect to H2O MLOps
	Prerequisites
	Connect with SSL verification enabled
	Connect with private certificate
	Connect with SSL verification disabled
	Connect from H2O Notebook Labs
	Verify the connection
	Advanced configurations
	Configurable timeout settings

	Manage Workspaces
	Prerequisites
	Create a workspace
	View workspaces
	Count workspaces
	List all workspaces
	List workspace aggregates
	Filter workspaces
	Retrieve a workspace

	Workspace properties
	Aggregate

	Update a workspace
	Delete a workspace

	Manage Experiments
	Prerequisites
	Create an experiment
	View experiments
	Count experiments
	List experiments
	Filter experiments
	Retrieve an experiment

	Experiment properties
	Metadata
	Parameters
	Statistics
	Input schema
	Output schema
	Scoring runtimes

	Compute Kubernetes options
	Update an experiment
	Add comments to an experiment
	Manage experiment tags
	Create a tag
	List tags
	Get a specific tag
	Add tag
	Update a tag
	Remove a tag
	Delete a tag

	Delete and restore experiments
	Delete using an experiment instance
	Restore using an experiment instance
	Delete using experiment UIDs
	Restore using experiment UIDs

	Handle artifacts
	Prerequisites
	Add an artifact
	View artifacts
	List artifacts
	Filter artifacts
	Retrieve an artifact

	Artifact properties
	Download an artifact
	Convert artifacts
	Convert JSON artifacts
	Convert text artifacts

	Update an artifact
	Delete an artifact

	Manage Models
	Prerequisites
	Create a model
	View models
	Count models
	List models
	Filter models
	Retrieve a model

	Model properties
	Update a model
	Manage model versions
	Register an experiment with a model
	List model versions
	Filter model versions
	Retrieve a model version
	Retrieve the experiment
	Unregister an experiment from a model

	Delete models
	Delete using a model instance
	Delete using model UIDs

	Configure deployments
	Prerequisites
	Composition options
	Security options
	Kubernetes options
	Vertical Pod Autoscaler (VPA) options
	Pod Disruption Budget (PDB) options
	Environment variables
	CORS origins
	Monitoring options

	Manage deployments
	Prerequisites
	Create a deployment
	View deployments
	List deployments
	List deployment statuses
	Filter deployments
	Retrieve a deployment

	Deployment properties
	View deployment logs
	View deployment logs from a specific time

	Manage endpoint
	Configure endpoint
	List deployment endpoints
	Retrieve a deployment endpoint
	Detach a configured endpoint
	Delete an endpoint

	Update a deployment
	Delete a deployment

	Deployment scorer
	Prerequisites
	View deployment scorers
	List deployment scorers
	Filter deployment scorers
	Retrieve a deployment scorer

	Deployment scorer properties
	Access endpoints
	View scorer state
	Check if the scorer is ready
	View scorer capabilities
	View schema
	Generate a sample request
	Create a payload
	Score against the deployment

	Advanced capabilities
	Prediction intervals
	Shapley values
	Media scoring

	Batch scoring
	Configure the input source
	Configure the output location
	Create batch scoring job
	Wait for job completion
	List all jobs
	Retrieve a job by ID
	Cancel a job
	Delete a job

	Monitoring setup
	Step 1: Define input and output columns
	Manual configuration
	Automatic configuration

	Step 2: Optional: Kafka integration for raw scoring logs
	Step 3: Edit baseline and columns before deployment
	Step 4: Configure monitoring for deployment
	Deploy with monitoring enabled
	Enable or disable monitoring after deployment

	Python client migration guide
	From v1.3.x to v1.4.x
	Imports
	Client creation
	Get allowed affinities and tolerations
	Create and register an experiment into a model
	Update an artifact’s parent
	Get artifact’s model-specific metadata (if applicable)
	Convert JSON artifact to a dictionary
	Get the experiment associated with a model version
	List scoring runtimes
	Create a deployment
	Create a deployment with new model monitoring options
	Wait for deployment to become healthy
	Get deployment state
	Update a deployment
	Access deployment scorer
	Score against a deployment
	Kubernetes options for a batch scoring job
	Get entity creator (if applicable)
	View the complete Table

	From v1.2.x to v1.3.x
	Removal of environments

	From v1.1.x to v1.2.x
	From v1.0.x to v1.1.x
	Minimal supported version
	Create a deployment

	H2O MLOps gRPC Gateway
	API information
	API gateway health check

	Release notes
	Version 1.0.0 (July 31, 2025)
	Python client v1.4.4
	Python client v1.4.3
	Python client v1.4.2
	Python client v1.4.1
	Python client v1.4.0

	Version 0.70.7 (May 30, 2025)
	Version 0.70.6 (May 29, 2025)
	Version 0.70.5 (Apr 25, 2025)
	Version 0.70.4 (Apr 8, 2025)
	Version 0.70.3 (Apr 3, 2025)
	Version 0.70.2 (Apr 3, 2025)
	Version 0.70.1 (Mar 31, 2025)
	Version 0.70.0 (Mar 13, 2025)
	Version 0.69.7 (Feb 17, 2025)
	Version 0.69.6 (Feb 13, 2025)
	Version 0.69.5 (Feb 6, 2025)
	Version 0.69.4 (Jan 21, 2025)
	Version 0.69.3 (Jan 17, 2025)
	Version 0.69.2 (Jan 14, 2025)
	Version 0.69.1 (Jan 9, 2025)
	Version 0.69.0 (Dec 19, 2024)
	Python client v1.2.0

	Version 0.68.0 (Nov 05, 2024)
	Python client v1.1.2
	Python client v1.1.0
	Python client v1.0.1

	Version 0.67.4 (Oct 10, 2024)
	Version 0.67.3 (Oct 01, 2024)
	Version 0.67.2 (Sep 19, 2024)
	Version 0.67.1 (Sep 13, 2024)
	Version 0.67.0 (Sep 02, 2024)
	Python client v1.0.0

	Version 0.66.1
	Version 0.66.0 (June 04, 2024)
	Version 0.65.1 (May 25, 2024)
	Python client v0.65.1a3
	Python client v0.65.1a2
	Python client v0.65.1a1

	Version 0.65.0 (May 08, 2024)
	Version 0.64.0 (April 08, 2024)
	Python client v0.64.0a2
	Python client v0.64.0a1

	Version 0.62.5
	Version 0.62.4
	Version 0.62.1
	Python client v0.62.1a7
	Python client v0.62.1a6
	Python client v0.62.1a5
	Python client v0.62.1a4
	Python client v0.62.1a3
	Python client v0.62.1a2
	Python client v0.62.1a1

	Version 0.62.0 (September 10, 2023)
	Version 0.61.1 (June 25, 2023)
	Python client v0.61.1a3

	Version 0.61.0 (May 24, 2023)
	Version 0.60.1 (April 02, 2023)
	Version 0.59.1
	Version 0.59.0 (February 12, 2023)
	Version 0.58.0 (December 15, 2022)
	Version 0.57.3 (November 16, 2022)
	Version 0.57.2 (August 01, 2022)
	Version 0.56.1 (May 16, 2022)
	Version 0.56.0 (April 18, 2022)
	Version 0.55.0 (March 31, 2022)
	Version 0.54.1 (March 08, 2022)
	Version 0.54.0 (February 03, 2022)
	Version 0.53.0 (January 18, 2022)
	Version 0.52.1 (November 17, 2021)
	Version 0.52.0 (September 13, 2021)
	Version 0.51.0 (August 20, 2021)
	Version 0.50.1 (August 04, 2021)
	Version 0.50.0 (July 29, 2021)
	Version 0.41.2 (June 2021)
	Version 0.41.1 (June 2021)
	Version 0.41.0 (May 25, 2021)
	Version 0.40.1 (March 15, 2021)
	Version 0.40.0 (January 14, 2021)
	Version 0.31.3 (December 02, 2020)
	Version 0.31.2 (November 11, 2020)
	Version 0.31.1
	Version 0.31.0 (October 21, 2020)
	Version 0.30.1 (October 08, 2020)
	Version 0.30.0
	Version 0.22.0 (July 30, 2020)
	Version 0.21.1 (July 07, 2020)
	Version 0.21.0 (June 12, 2020)
	Version 0.20.1 (April 02, 2020)
	Version 0.20.0 (April 01, 2020)

	Migration guide
	From 0.70.0 to 1.0.0
	Workspace integration
	Python client
	Removal of Wave UI
	Helm chart changes
	Monitoring setup changes
	Hash security option changes

	From 0.69.x to 0.70.0
	Transition from Scoring Client to native batch scoring

	Workload identity and IAM authentication
	Removal of mTLS
	Removal of support for older H2O Driverless AI versions
	Removal of Pickle Runtime

	From 0.68.x to 0.69.0
	MLOPs runtimes
	MLOps storage
	PBKDF2 hash support

	From 0.67.x to 0.68.0
	(Optional) Vertical Pod Autoscaler (VPA) support
	Removal of HT runtime based on Python 3.8
	Configure maximum number of Kubernetes replicas
	Removal of MLflow runtimes based on Python 3.8
	Pickle runtime based on Python 3.12
	Deployment of MLOps Telemetry as a long-running microservice
	Scheduler routine for MLOps Telemetry
	Restructured environment security options
	Helm changes
	Default deployment security option
	Cloud migration information: MLOps storage

	From 0.66.1 to 0.67.0
	Announcement: Upcoming Java MOJO Runtime removal
	Scoring runtimes
	Python client
	Removal of Conda from Wave app
	Monitoring data retention
	Emissary
	Other changes

	Key terms
	Workspaces
	BYOM (Bring Your Own Model)
	Experiments
	Experiment metadata

	Artifacts in MLOps
	Defining artifacts and experiment artifacts
	Artifact type
	Deployable artifact type
	Artifact processor

	Deployments
	Drift detection
	Drift evaluation

	Node affinity and toleration

